Green-sell.info

Новые технологии
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Типы данных программирование

Основы программирования на C++, PASCAL

Стартовая

Основы программирования

Программирование на JAVA

Программирование на C++

Программирование на Pascal

Задачи по программированию

Навигация

3.4. Типы данных

Концепция типов данных является одной из центральных в любом языке программирования. С типом величины связаны три ее свойства: форма внутреннего представления, множество принимаемых значений и множество допустимых операций. Турбо Паскаль характеризуется большим разнообразием типов данных, отраженном на рис. 9.

В стандартном Паскале отсутствует строковый тип. Кроме того, в Турбо Паскале целые и вещественные — это группы типов. В старших версиях Турбо Паскаля существует процедурный тип и тип объект.

Каждый тип имеет свой идентификатор.

В табл. 3.1 представлена информация о простых типах данных, определенных в Турбо Паскале. Для вещественных типов в скобках указано количество сохраняемых значащих цифр мантиссы в десятичном представлении числа.

В стандарте Паскаля из вещественных типов определен только тип Real; из целых типов — Integer.

Типы Single, Double, Extended употребляются в Паскаль-программах только в том случае, если ПК снабжен сопроцессором «плавающей арифметики» (для процессоров IBM PC, начиная с Intel-80486 и старше, это условие всегда выполняется).

Тип данных называется порядковым, если он состоит из счетного количества значений, которые можно пронумеровать. Отсюда следует, что на этом множестве значений существуют понятия «следующий» и «предыдущий».

Описание переменных. Для всех переменных величин, используемых в программе, должны быть указаны их типы. Это делается в разделе переменных программы. Структура раздела переменных показана на рис. 10.

Пример раздела переменных программы:

Var m,n,k: Integer;

Константы. Тип константы определяется по контексту, т.е. по форме ее записи в программе.

Целые десятичные константы записываются в обычной форме целого числа со знаком или без знака, например 25, -24712, 376.

Целые шестнадцатеричные константы записываются с префиксом $. Они должны находиться в диапазоне от $00000000 до $FFFFFFFF.

Вещественные константы с фиксированной точкой записываются в обычной форме десятичного числа с дробной частью. Разделитель целой и дробной части — точка, например: 56.346, 0.000055, -345678.0.

Вещественные константы с плавающей точкой имеют форму:

Здесь мантисса — целое или вещественное число с фиксированной точкой, порядок — целое число со знаком или без, например 7Е-2 (7∙10-2), 12.25Е6 (12,25∙106), 1Е-25 (10-25).

Типы данных

Информация, поступающая в компьютер, состоит из определенного множества данных, относящихся к какой-то проблеме, — это именно те данные, которые относятся к конкретной задаче и из которых требуется получить желаемый ответ. В математике классифицируют данные в соответствии с некоторыми важными характеристиками. Принято различать целые, вещественные и логические данные, множества, последовательности, векторы, матрицы (таблицы) и т.д. В обработке данных на компьютере классификация играет даже боRльшую роль.

Любая константа, переменная, выражение или функция относятся к некоторому типу. Тип данных определяет диапазон допустимых значений и операций, которые могут быть применены к этим значениям. Кроме того, тип данных задает формат представления объектов в памяти компьютера, ведь в конце концов любые данные будут представлены в виде последовательности двоичных цифр (нулей и единиц). Тип данных указывает, каким образом следует интерпретировать эту информацию. Тип любой величины может быть установлен при ее описании, а в некоторых языках может выводиться компилятором по ее виду (Fortran, Basic).

Например, если переменная имеет целочисленный тип данных, то таким образом определен диапазон значений, которые могут быть сохранены в этой переменной (целые числа) и определены операции, которые могут быть применены к этой переменной (арифметические, логические, возможность ввода и вывода значений этой переменной). Каждый язык программирования поддерживает один или несколько типов данных. Наличие в языке программирования типизации означает жесткую связку операций и типов объектов, над которыми их можно выполнять. Не все языки обладают таким свойством. Например, в языке С практически любые операции можно выполнять над любыми данными (например, складывать два символа или число с логическим значением, но в большинстве случаев такие операции бессмысленны и соответствуют ошибке в программе, на которую компилятор указать не сможет).

Классификация типов данных

Любые данные могут быть отнесены к одному из двух типов: простому (основному), форма представления которого определяется архитектурой ЭВМ, или сложному, конструируемому пользователем для решения конкретных задач. Данные простого типа — это символы, числа и т.п. элементы, дальнейшее дробление которых не имеет смысла. Из таких элементарных данных формируются структуры (сложные типы) данных.

Принято различать следующие типы данных:

Рассмотрим перечисленные типы данных подробнее.

Простые типы

Числовые типы. Значениями переменных таких типов являются числа. К ним могут применяться обычные арифметические операции, операции сравнения (в результате получается логическое значение). Принципиально различны в компьютерном представлении целые и вещественные типы.

Целочисленные типы данных делятся, в свою очередь, на знаковые и беззнаковые. Целочисленные со знаком могут принимать как положительные, так и отрицательные значения, а беззнаковые — только неотрицательные значения. Диапазон значений при этом определяется количеством разрядов, отводимых на представление конкретного типа в памяти компьютера (см. “Представление чисел”).

Вещественные типы бывают: с фиксированной точкой, то есть хранятся знак и цифры целой и дробной частей (в настоящее время в языках программирования реализуются редко), и с плавающей точкой, то есть число приводится к виду m х 2 e , где m — мантисса, а e — порядок числа, причем 1/2 m 1, e — целое число. В данном случае хранятся знак, число e и двоичные цифры дробной части числа m, которые умещаются в отведенную для этого память. Говорят, что вещественные числа представимы с некоторой точностью.

Символьный тип. Элемент этого типа хранит один символ. При этом могут использоваться различные кодировки, которые определяют, какому коду (двоичному числу) какой символ (знак) соответствует. К значениям этого типа могут применяться операции сравнения (в результате получается логическое значение). Символы считаются упорядоченными согласно своим кодам (номерам в кодовой таблице).

Логический тип. Данные этого типа имеют два значения: истина (true) и ложь (false). К ним могут применяться логические операции. Используется в условных выражениях, операторах ветвления и циклах. В некоторых языках, например С, является подтипом числового типа, при этом ложь = 0, истина = 1 (или истинным считается любое значение, отличное от нуля).

Перечислимый тип. Отражает самый прямолинейный способ описания простого типа — перечисление всех значений, относящихся к этому типу. Каждая константа такого типа получает свой порядковый номер, что позволяет реализовать ряд простых операций над этим типом, таких, как получить следующее по порядку значение данного типа.

Множество как тип данных в основном совпадает с обычным математическим понятием множества. Допустимы стандартные операции с множествами и проверка на принадлежность элемента множеству. В некоторых языках рассматривается как составной тип (массив логических значений, i-й элемент которого указывает, находится ли i в множестве), однако эффективней реализовывать множество как машинное слово (или несколько слов), каждый бит которого характеризует наличие соответствующего элемента в множестве.

Указатель (тип данных). Если описанные выше типы данных представляли какие-либо объекты реального мира, то указатели представляют объекты компьютерного мира, то есть являются исключительно компьютерными терминами. Переменная-указатель хранит адрес в памяти компьютера, указывающий на какую-либо информацию, как правило — на другую переменную.

Составные типы

Составные типы формируются на основе комбинаций простых типов.

Массив является индексированным набором элементов одного типа, простого или составного (см. “Операции с массивами”). Одномерный массив предназначен для компьютерной реализации такой структуры, как вектор, двухмерный массив — таблицы.

Строковый тип. Хранит строку символов. Вообще говоря, может рассматриваться как массив символов, но иногда рассматривается в качестве простого типа. Часто используется для хранения фамилий людей, названий предметов и т.п. К элементам этого типа может применяться операция конкатенации (сложения) строк. Обычно реализованы также операции сравнения над строками, в том числе операции “ ”, которые интерпретируются как сравнение строк согласно алфавитному порядку (алфавитом здесь является набор символов соответствующей кодовой таблицы). Во многих языках реализованы и специальные операции над строками: поиск заданного символа (подстроки), вставка символа, удаление символа, замена символа.

Читать еще:  Матлаб онлайн программирование

Запись. Наиболее общий метод получения составных типов из простых заключается в объединении элементов произвольных типов. Причем сами эти элементы могут быть, в свою очередь, составными. Так, человек описывается с помощью нескольких различных характеристик, таких, как имя, фамилия, дата рождения, пол, и т.д. Записью (в языке С — структурой) называется набор различных элементов (полей записи), хранимый как единое целое. При этом возможен доступ к отдельным полям записи. К полю записи применимы те же операции, что и к базовому типу, к которому это поле относится (тип каждого поля указывается при описании записи).

Последовательность. Данный тип можно рассматривать как массив бесконечного размера (память для него может выделяться в процессе выполнения программы по мере роста последовательности). Зачастую такой тип данных обладает лишь последовательным доступом к элементам. Под этим подразумевается, что последовательность просматривается от одного элемента строго к следующему, формируется же она путем добавления элементов в ее конец. В языке Pascal подобному типу соответствуют файловые типы данных.

Преимущества от использования типов данных

Типы данных защищают программы по крайней мере от следующих ошибок:

1. Некорректное присваивание. Пусть переменная объявлена как имеющая числовой тип. Тогда попытка присвоить ей символьное или какое-либо другое значение приведет к ошибке еще на этапе компиляции. Такого рода ошибки трудно отследить обычными средствами.

2. Некорректная операция. Типизация позволяет избежать попыток применения выражений вида “Hello world” + 1. Поскольку, как уже говорилось, все переменные в памяти хранятся как наборы битов, то при отсутствии типов подобная операция была выполнима (и могла дать результат вроде “Hello worle”!). С использованием типов такие ошибки отсекаются опять же на этапе компиляции.

3. Некорректная передача параметров в процедуры и функции (см. “Подпрограммы”). Если функция “синус” ожидает, что ей будет передан числовой аргумент, то передача ей в качестве параметра строки “Hello world” может иметь непредсказуемые последствия. При помощи контроля типов такие ошибки также отсекаются на этапе компиляции или приводят к ошибкам выполнения программы, если значения параметра вводятся с клавиатуры или файла.

Кроме того, типы данных позволяют программисту абстрагироваться от машинного представления информации в виде наборов нулей и единиц и строить программы, основываясь на знакомых понятиях, таких, как числа, множества, последовательности, и т.п. В конечном итоге это приводит к получению более надежных программ.

Методические программы

При изучении данной темы самое главное — разделить следующие понятия:

данные — тип данных — абстрактная структура данных — структура данных

Типом данных переменной называют множество значений, которые может принимать эта переменная, и множество операций, которые применимы к этим значениям.

Абстрактная структура данных (см. “Структуры данных”) — это некоторая математическая модель данных (см. выше), включающая различные операции, определенные в рамках этой модели. Для реализации абстрактной структуры в том или ином языке программирования используются структуры, которые представляют собой набор переменных, возможно различных типов данных, объединенных определенным образом. При этом одна и та же абстрактная структура данных может быть реализована через различные структуры языка программирования. Например, такая абстрактная структура данных, как список, может быть реализована с использованием массива, файла или списка динамических переменных. Примеры различных структур данных, реализующих абстрактную структуру граф, приведены в статье “Табличные модели” 2.

Изучение конкретных типов данных производится в процессе рассмотрения определенного языка программирования в курсе информатики. При этом нельзя совсем не касаться таких вопросов, как представление определенного типа данных в памяти компьютера и диапазон значений, которые могут принимать переменные каждого из типов. Рассказывать стоит и о преобразованиях типов, как автоматических, выполняемых компилятором при анализе операции присваивания, например, вещественной переменной целочисленного выражения, так и производимых программистом, например, при переводе текстовой информации в числовую и т.д.

Изучение особенностей представления целых чисел (а именно этот тип данных встречается в учебных задачах по программированию чаще всего) полезно проиллюстрировать следующим примером.

Пример. С помощью программы на языке Borland Pascal вычислим значение n! (факториал числа n). Версия языка в данном случае указана потому, что ею определяется количество разрядов, отводимых на переменные определенного типа. В данном случае на переменные типа integer отводится 16 бит, что определяет диапазон значений этого знакового типа от –32 768 до 32 767.

var a,i,n: integer;

При запуске этой программы для n = 7, 8 и 10 мы получим 5040, –25 216 и 24 320 соответственно. Первое полученное значение является верным, второе (отрицательное) может натолкнуть программиста на мысль, что в результате арифметических действий произошел выход за границу диапазона значений типа, а вот третье число само по себе может показаться верным, хотя, конечно, это не так.

На этом примере можно показать, что правильный алгоритм решения задачи при неправильном выборе типов данных может привести к абсурдному результату. И при разработке программы одним из важных этапов является оценка возможных значений (в том числе промежуточных) используемых переменных и выбор подходящих типов данных.

Следует подчеркнуть, что для целого типа выход за диапазон значений не приводит к прерыванию работы процессора (компьютер выдает неверные результаты), а для вещественных чисел (переполнение порядка) — это аварийная ситуация (floating point error), которая не пройдет незамеченной.

Типы данных программирование

Анализируя данные табл. 1, можно сделать следующие выводы:

o если не указан базовый тип, то по умолчанию подразумевается int;

o если не указан модификатор знаков, то по умолчанию подра­зумевается signed;

o с базовым типом float модификаторы не употребляются;

o модификатор short применим только к базовому типу int.

Программисту, работавшему на Паскале, покажется странным, что тип char причислен к арифметическим типам. Ведь даже его имя указывает на то, что это символьный тип! В Си/Си++ вели­чины типа char могут рассматриваться в программе и как симво­лы, и как целые числа. Все зависит от контекста, т. е. от способа использования этой величины. В случае интерпретации величины типа char как символа ее числовое значение является ASCII-кодом. Следующий пример иллюстрирует сказанное.

printf(«%c»,а); /*На экране появится символ А*/

printf(«%d»,a); /*На экране появится число 65*/

Символы «%с» являются спецификацией формата ввода/выво­да символьных данных, a «%d» — спецификацией для целых чисел.

Еще одной особенностью Си является отсутствие среди базовых типов логического типа данных. Между тем, как мы дальше увидим, в Си использу­ются логические операции и логические выражения. В качестве логических величин в Си/Си++ выступают целые числа. Интер­претация их значений в логические величины происходит по пра­вилу: равно нулю — ложь, не равно нулю — истина.

В последние версии Си++ добавлен отдельный логический тип с именем bool. Его относят к разновидности целых типов данных.

Описание переменных в программах на Си/Си++ имеет вид:

unsigned char code;

unsigned long long number;

long double max__num;

Одновременно с описанием можно задать начальные значения переменных. Такое действие называется инициализацией перемен­ных. Описание с инициализацией производится по следующей схеме:

тип имя_переменной = начальное_значение

unsigned int year=2 000;

Запись целых констант. Целые десятичные числа , начинающиеся не с нуля, например: 4, 356, —128.

Целые восьмеричные числа , запись которых начинается с нуля, например: 016, 077.

Целые шестнадцатеричные числа , запись которых начинается с символов 0х, например: 0xlA, 0x253, 0xFFFF.

Тип константы компилятор определяет по следующим пра­вилам: если значение константы лежит в диапазоне типа int, то она получает тип int; в противном случае проверяется, ле­жит ли константа в диапазоне типа unsigned int, в случае положительного ответа она получает этот тип; если не подхо­дит и он, то пробуется тип long и, наконец, unsigned long. Если значение числа не укладывается в диапазон типа unsigned long, то возникает ошибка компиляции.

Запись вещественных констант . Если в записи числовой кон­станты присутствует десятичная точка (2.5) или экспоненциаль­ное расширение (1E-8), то компилятор рассматривает ее как ве­щественное число и ставит ей в соответствие тип double. Приме­ры вещественных констант: 44., 3.14159, 44Е0, 1.5Е-4.

Читать еще:  C лучший язык программирования

Использование суффиксов . Программист может явно задать тип константы, используя для этого суффиксы. Существуют три вида суффиксов: F (f) — float; U(u) — unsigned; L( l ) — long (для целых и вещественных констант). Кроме того, допускается совмес­тное использование суффиксов и и L в вариантах U L или LU.

3.14159F — константа типа float, под которую выделяется 4 байта памяти;

3.14L — константа типа long double, занимает 10 байт;

50000U — константа типа unsigned int, занимает 2 байта памяти (вместо четырех без суффикса);

0LU — константа типа unsigned long, занимает 4 байта;

24242424UL — константа типа unsigned long, занимает 4 байта.

Запись символьных и строковых констант. Символьные констан­ты заключаются в апострофы. Например: ‘ А ’ , ‘ а ’ , ‘ 5 ’ , ‘ + ’ . Стро­ковые константы, представляющие собой символьные последова­тельности, заключаются в двойные кавычки. Например: «rezult», «введите исходные данные».

Особую разновидность символьных констант представляют так называемые управляющие символы. Их назначение — управление выводом на экран. Как известно, такие символы расположены в начальной части кодовой таблицы ASCII (коды от 0 до 31) и не имеют графического представления. В программе на Си они изоб­ражаются парой символов, первый из которых ‘ ‘. Вот некото­рые из управляющих символов:

‘ n ‘ — переход на новую строку;

‘ t’ — горизонтальная табуляция;

‘а’ — подача звукового сигнала. Полный список управляю­щих символьных последовательностей будет дан позднее.

Управляющие символьные последовательности являются частным случаем эскейп-последовательностей (ESC-sequence), с помощью которых можно задать символьную константу указанием ее кода. Код символа можно указать в восьмеричном или в шестнадцатеричном представлении. Формат восьмеричного представления: ‘ddd’. Здесь d — восьмеричная цифра (от 0 до 7). Формат шестнадцатеричного представления:’ xhh’ (или ‘ xhh’), где h — шестнадцатеричная цифра (от 0 до F). Например, константа, соответствующая заглав­ной латинской букве А, может быть представлена тремя способа­ми: ‘А’, ‘101’, ‘х41’.

Именованные константы (константные переменные) . В программе на Си/Си++ могут использоваться имено­ванные константы. Употребляемое для их определения служебное слово const принято называть квалификатором доступа. Квалификатор const указывает на то, что данная величина не может изменяться в течение всего времени работы программы. В частно­сти, она не может располагаться в левой части оператора присва­ивания. Примеры описания константных переменных:

const float pi=3.14159;

const int iMIN=l, iMAX=1000;

Определение констант на стадии препроцессорной обработки про­граммы . Еще одной возможностью ввести именованную констан­ту является использование препроцессорнои директивы #define в следующем формате:

#define Оначение константы>

#define iMAX 1000

Тип констант явно не указывается и определяется по форме записи. В конце директивы не ставится точка с запятой.

На стадии препроцессорной обработки указанные имена заме­няются на соответствующие значения. Например, если в програм­ме присутствует оператор

то в результате препроцессорной обработки он примет вид:

При этом идентификаторы iMAX и iMIN не требуют описания внутри программы.

Константы перечисляемого типа . Данное средство языка по­зволяет определять последовательность целочисленных именован­ных констант. Описание перечисляемого типа начинается со слу­жебного слова enum, а последующий список констант заключает­ся в фигурные скобки. Например:

В результате имени А будет сопоставлена константа 0, имени B — константа 1, C — 2, D — 3. По умолчанию значение первой константы равно нулю.

Для любой константы можно явно указать значение. Например:

В результате будут установлены следующие соответствия: А=10, B=11, C=12, D=13.

Возможен и такой вариант определения перечисления:

Если перечисляемому типу дать имя, то его можно использо­вать в описании переменных. На­пример:

metal Met 1 ,Met2;

Здесь идентификатор metal становится именем типа. После та­кого описания в программе возможны следующие операторы:

Типы данных в языке С++

Цель лекции: изучить классификацию типов и их внутреннее представление в языке С++, научиться работать со стандартными и пользовательскими типами .

Основная цель любой программы состоит в обработке каких-либо данных, например, чисел или текстов. Данные могут быть различного вида или типа и, в зависимости от этого, с ними можно выполнять разные действия.

В любом языке программирования каждая константа, переменная , результат вычисления выражения или функции должны иметь определенный тип данных .

Тип данных – это множество допустимых значений, которые может принимать тот или иной объект , а также множество допустимых операций, которые применимы к нему. В современном понимании тип также зависит от внутреннего представления информации.

Таким образом, данные различных типов хранятся и обрабатываются по-разному. Тип данных определяет:

  • внутреннее представление данных в памяти компьютера;
  • объем памяти, выделяемый под данные;
  • множество (диапазон) значений, которые могут принимать величины этого типа;
  • операции и функции, которые можно применять к данным этого типа.

Исходя из данных характеристик, необходимо определять тип каждой величины, используемой в программе для представления объектов. Обязательное описание типа позволяет компилятору производить проверку допустимости различных конструкций программы. От выбора типа величины зависит последовательность машинных команд, построенная компилятором.

Классификация типов данных в С++

Современные языки программирования, как правило, могут иметь набор простых типов, являющихся встроенными в данный язык программирования , и средства для создания производных типов.

Объектно-ориентированные языки программирования позволяют определять типы класса.

Реализация простых типов данных заключается в способе представления значений данного типа в компьютере и в наборе операций, поддерживаемых для данного типа.

Тип данных определяет размер памяти, выделяемой под переменную данного типа при ее создании. Язык программирования C++ поддерживает следующие типы данных (рис. 1.1).

  • Базовые типы. Базовые типы предопределены стандартом языка , указываются зарезервированными ключевыми словами и характеризуются одним значением. Их не надо определять и их нельзя разложить на более простые составляющие без потери сущности данных. Базовые типы объектов создают основу для построения более сложных типов .
  • Производные типы. Производные типы задаются пользователем, и переменные этих типов создаются как с использованием базовых типов, так и типов классов.
  • Типы класса. Экземпляры этих типов называются объектами.

Существует четыре спецификатора типа данных, уточняющих внутреннее представление и диапазон базовых типов:

Рассмотрим более подробно базовые типы данных .

Целочисленный (целый) тип данных (тип int)

Переменные данного типа применяются для хранения целых чисел ( integer ). Описание переменной , имеющей тип int , сообщает компилятору, что он должен связать с идентификатором (именем) переменной количество памяти, достаточное для хранения целого числа во время выполнения программы.

Границы диапазона целых чисел, которые можно хранить в переменных типа int , зависят от конкретного компьютера, компилятора и операционной системы (от реализации). Для 16-разрядного процессора под него отводится 2 байта, для 32-разрядного – 4 байта.

Для внутреннего представления знаковых целых чисел характерно определение знака по старшему биту (0 – для положительных, 1 – для отрицательных). Поэтому число 0 во внутреннем представлении относится к положительным значениям. Следовательно, наблюдается асимметрия границ целых промежутков.

В целочисленных типах для всех значений определены следующий и предыдущий элементы. Для максимального следующим значением будет являться минимальное в этом же типе, предыдущее для минимального определяется как максимальное значение . То есть целочисленный диапазон условно можно представить сомкнутым в кольцо. Поэтому определены операции декремента для минимального и инкремента для максимального значений в целых типах .

От количества отводимой под объект памяти зависит множество допустимых значений, которые может принимать объект :

  • short int – занимает 2 байта, следовательно, имеет диапазон от –32 768 до +32 767;
  • int – занимает 4 байта, следовательно, имеет диапазон от –2 147 483 648 до +2 147 483 647;
  • long int – занимает 4 байта, следовательно, имеет диапазон от –2 147 483 648 до +2 147 483 647;
  • long long int – занимает 8 байтов, следовательно, имеет диапазон от –9 223 372 036 854 775 808 до +9 223 372 036 854 775 807.

Модификаторы signed и unsigned также влияют на множество допустимых значений, которые может принимать объект :

  • unsigned short int – занимает 2 байта, следовательно, имеет диапазон от 0 до 65 535;
  • unsigned int – занимает 4 байта, следовательно, имеет диапазон от 0 до 4 294 967 295;
  • unsigned long int – занимает 4 байта, следовательно, имеет диапазон от 0 до 4 294 967 295;
  • unsigned long long int – занимает 8 байтов, следовательно, имеет диапазон от 0 до 18 446 744 073 709 551 615.
Читать еще:  Мультипрограммирование с переменными разделами

Приведем несколько правил, касающихся записи целочисленных значений в исходном тексте программ.

  • Нельзя пользоваться десятичной точкой. Значения 26 и 26.0 одинаковы, но 26.0 не является значением типа int .
  • Нельзя пользоваться запятыми в качестве разделителей тысяч. Например, число 23,897 следует записывать как 23897.
  • Целые значения не должны начинаться с незначащего нуля. Он применяется для обозначения восьмеричных или шестнадцатеричных чисел, так что компилятор будет рассматривать значение 011 как число 9 в восьмеричной системе счисления .

На практике рекомендуется использовать основной целый тип , то есть тип int . Данные основного целого типа практически всегда обрабатываются быстрее, чем данные других целых типов. Короткий тип short подойдет для хранения больших массивов чисел с целью экономии памяти при условии, что значения элементов не выходят за предельные границы для этих типов. Длинные типы необходимы в ситуации, когда не достаточно типа int .

Вещественный (данные с плавающей точкой) тип данных (типы float и double)

Для хранения вещественных чисел применяются типы данных float (с одинарной точностью) и double (с двойной точностью). Смысл знаков «+» и «-» для вещественных типов совпадает с целыми. Последние незначащие нули справа от десятичной точки игнорируются. Поэтому варианты записи +523.5, 523.5 и 523.500 представляют одно и то же значение .

Для представления вещественных чисел используются два формата:

  • с фиксированной точкой

В большинстве случаев используется тип double , он обеспечивает более высокую точность , чем тип float . Максимальную точность и наибольший диапазон чисел достигается с помощью типа long double .

Величина с модификатором типа float занимает 4 байта. Из них 1 бит отводится для знака, 8 бит для избыточной экспоненты и 23 бита для мантиссы . Отметим, что старший бит мантиссы всегда равен 1, поэтому он не заполняется, в связи с этим диапазон модулей значений переменной с плавающей точкой приблизительно равен от 3.14E–38 до 3.14E+38.

Величина типа double занимает 8 байтов в памяти. Ее формат аналогичен формату float . Биты памяти распределяются следующим образом: 1 бит для знака, 11 бит для экспоненты и 52 бита для мантиссы . С учетом опущенного старшего бита мантиссы диапазон модулей значений переменной с двойной точностью равен от 1.7E–308 до 1.7E+308.

Величина типа long double аналогична типу double .

Программирование на C, C# и Java

Уроки программирования, алгоритмы, статьи, исходники, примеры программ и полезные советы

ОСТОРОЖНО МОШЕННИКИ! В последнее время в социальных сетях участились случаи предложения помощи в написании программ от лиц, прикрывающихся сайтом vscode.ru. Мы никогда не пишем первыми и не размещаем никакие материалы в посторонних группах ВК. Для связи с нами используйте исключительно эти контакты: vscoderu@yandex.ru, https://vk.com/vscode

Типы данных

Поговорим про типы данных в языках программирования. Они делятся на две категории: примитивные типы и ссылочные типы. В статье рассмотрим каждую из категорий.

Примитивные типы данных

Примитивные типы данных – это базовые типы данных языка программирования. Их ключевая особенность в том, что данные в них, в отличие от ссылочных типов, располагаются непосредственно [“в переменной”.] на участке памяти компьютера в котором находится переменная. Перечислим и опишем основные примитивные типы данных в программировании.

  • Логический тип данных или булевый. Переменные данного вида могу принимать лишь два значения: истина (true, либо 1) или ложь (false, либо 0). В различных языках программирования булевы переменные объявляются с помощью ключевого слова bool либо boolean. Логический тип данных имеет широчайшее применение (как собственно и другие типы). Например, он фигурирует в условных операторах ветвления (if) и операторах цикла (for, while, do-while).
  • Целочисленный тип данных. Обычно объявляется ключевым словом int или integer. Переменные данного типа могут принимать только целочисленные значения. Часто тип int занимает четыре байта (2 32 = 4294967296), следовательно переменные могут принимать значения от – 2 147 483 648 и до 2 147 483 647 в случае, когда целый тип учитывает знак числа. Если использовать беззнаковый целый тип данных (unsigned int), то его диапазон значений от 0 до 4294967295. В языке программирования Java целый тип всегда 4 байта. В языках Си и C# предполагаемый размер также 4 байта, но на деле – всё зависит от конкретной реализации языка на программной платформе.
    Данный тезис относится не только к типу int. Размер каждого примитивного типа данных в любой реализации языка Java всегда строго определен и одинаков. В C-подобных языках это не так.
  • Целочисленный тип byte. Исходя из названия типа, он занимает в памяти один байт, то есть восемь бит. 2 8 = 256 – такое количество значений он может в себя вместить. Если говорить конкретно, то в случае, если тип byte со знаком, то диапазон от -128 до 127 (не забываем, что есть еще число ноль); когда byte беззнаковый, то от 0 до 255.
  • Короткий целый тип short. В памяти для него выделено 2 байта = 16 бит (2 16 = 65536). Диапазон принимаемых значений типом short со знаком – это [-32768; 32767].
  • Длинный целый тип long. Длинный целый тип занимает в памяти 8 байт, то есть 64 бита. 2 64 = 1,8446744 × 10 19 . Диапазон допустимых значений очень велик: в случае знакового типа, это [-9223372036854775808; 9223372036854775807]. Кроме того, модификатор long можно использовать в сочетании с другими типами (long пишется перед названием типа, например: long double), расширяя, тем самым, диапазон допустимых значений типа согласно спецификации конкретного языка программирования.
  • Число с плавающей запятой. Этот тип обозначается ключевым словом float, также же этот тип называют вещественным типом одинарной точности. float – это ни что иное, как десятичная дробь (привычная нам на письме), но в памяти компьютера она представляется в виде экспоненциальной записи: состоит из мантиссы и показателя степени. Например: 0,0506 = 506,0 ⋅ 10 -4 , где 506 – мантисса, а -4 – показатель степени десяти. Размер типа данных float в спецификации языка Си четко не определен.
  • Число с плавающей запятой двойной точности – это тип double. Данный тип схож с типом float, единственное их различие – это размер в памяти и, соответственно, диапазон принимаемых значений. Естественно тип double больше; но всё зависит от реализации языка, говоря строго: тип double по крайней мере должен быть не меньше, чем float.
  • Символьный тип данных занимает в памяти один байт – если используется кодировка ASCII и два байта – если установлена кодировка Unicode. Данный тип по сути является целым числом. Цифра, хранящаяся в переменной символьного типа – это номер символа в таблице кодировки. Обычно объявляется с помощью ключевого слова char. Нужно четко представлять себе, что char – это число, и работать с ним, как с числом, в некоторых случаях очень удобно и эффективно.

Ключевая особенность примитивных типов данных в том, что они передаются по значению. Это значит, что при передачи переменной в качестве аргумента функции (или методу) она копируется туда. Следовательно манипуляции, производимые с переменной в вызванной функции, никак не повлияют на значение переменной в вызывающей функции.

Примечание: модификатор unsigned (то есть беззнаковый) применим к любому целочисленному типу (в том числе и к символьному), а long (длинный) применим практически к любому типу, за исключением логического.

Ссылочные типы данных

Самая важная особенность ссылочных типов данных состоит в том, что они передаются не по значению, а по ссылке. Что это значит?

Ссылочные типы данных не являются примитивными и их размер не фиксирован и может быть произвольным, кроме того они хранятся не [“в переменной”.] на участке памяти переменной, а в совершенно другом месте памяти компьютера. Ссылочными типами, например, являются массивы. В объектно-ориентированных языках программирования – это экземпляры классов, коллекции и т.п.

Ссылка на основную публикацию
Adblock
detector