Green-sell.info

Новые технологии
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Системы программирования примеры

Конструирование программ.

Основные понятия, факты

Основные этапы проектирования программ. Основные блоки транслятора, их функции. Структура программы. Отладка и тестирование программ. Компоненты интегрированной среды программирования. Системы визуального программирования.

Навыки и умения

Разработка и отладка программ в интегрированной среде программирования. Разработка приложений в среде визуального программирования.

1. Системное программное обеспечение / А.В. Гордеев, А.Ю. Молчанов. – СПб.: Питер, 2001. – С. 347 – 700.

2. Пустоваров В.И. Ассемблер: программирование и анализ корректности машинных программ: — К.: Издательская группа BHV , 2000. – С. 22-23 с.

Основные этапы проектирования программ

1. Постановка задачи. Задача формулируется на естественном языке. Определяются цели. Подготавливается техническое задание на разработку программы.

2. Обоснованный выбор средств разработки (программирования). Разрабатываются форматы ввода исходных данных и отображения результатов.

3. Выбор метода решения задачи. Анализ возможности использования ранее разработанного и доступного для программиста ПО.

4. Разработка алгоритма решения задачи. Декомпозиция задачи на подзадачи. Определение последовательности решения подзадач. Разработка структуры программы.

5. Кодирование средствами выбранного языка программирования.

6. Верификация и проверка корректности. Аналитическое доказательство правильности программы.

7. Тестирование программы. Разработка тестов и контрольных примеров. Сопоставление реальных и ожидаемых результатов.

8. Отладка программы в случае обнаружения ошибок. Локализация обнаруженных ошибок. Коррекция ошибок. Возврат к этапу тестирования.

9. Разработка документации. Текстовое описание программы. Разработка инструкций пользователю – лицу, применяющему разработанную программу в своей работе. Разработка инструкций по эксплуатации, содержащих информацию, требующуюся программистам, ответственным за нормальное функционирование программы.

10. Опытная эксплуатация. Уточнение требований заказчика к представлению исходных данных и результатов работы программы. При необходимости возврат к предыдущим этапам.

11. Промышленная эксплуатация. Сопровождение программы. Обработка требований к новым версиям программы.

Современные системы программирования

Системой программирования будем называть комплекс программных средств, предназначенных для кодирования, тестирования и отладки программного обеспечения.

Такие комплексы, как правило, включают следующие программные модули.

ь Текстовые редакторы, служащие для создания текстов исходных программ.

ь Компиляторы, предназначенные для перевода исходного текста на входном языке в язык машинных кодов.

ь Компоновщики, позволяющие объединять несколько объектных модулей, порождаемых компилятором, в одну программу.

ь Библиотеки прикладных программ, содержащие в себе наиболее часто используемые подпрограммы в виде готовых объектных модулей.

ь Загрузчики, обеспечивающие подготовку готовой программы к выполнению.

ь Отладчики, выполняющие программу в заданном режиме (например, пошаговом) с целью поиска, обнаружения и локализации ошибок.

Подробнее см. лекцию №30 (классификация ПО).

Исторически комплексы для разработки ПО развивались от отдельно поставляемых компиляторов, представляющих собой обособленные программные модули, к интегрированным средам программирования, которые первоначально включали в себя редакторы исходных текстов программ и командный язык компиляции. Развитие интегрированных сред разработки ПО привело к появлению развитых средств интерфейса пользователя, сначала текстовых, а потом и графических.

Первой удачной средой называют интегрированную среду программирования Turbo Pascal на основе языка Pascal производства фирмы Borland . Ее широкая популярность определила тот факт, что со временем все разработчики компиляторов обратились к созданию интегрированных средств разработки для своих продуктов.

Эти системы включали помимо встроенного редактора текстов подсистемы работы с файлами, систему помощи, подсистемы управления компиляцией и редактор связей, компилятор, встроенный отладчик.

Дальнейшее развитие средств разработки связано с распространением развитых средств графического интерфейса пользователя. В состав средств разработки ПО сначала были включены библиотеки, поддерживающие развитый графический интерфейс пользователя и взаимодействие с функциями API операционных систем. Позже были включены дополнительные средства, предназначенные для разработки внешнего вида интерфейсных модулей (системы визуального программирования).

Для описания графических элементов программ потребовались соответствующие языки. На их основе сложилось понятие «ресурсов» прикладных программ.

Ресурсами прикладной программы называют множество данных, обеспечивающих внешний вид интерфейса пользователя этой программы и не связанных напрямую с логикой выполнения программы (например, тексты сообщений программы, цветовая гамма элементов интерфейса, надписи на кнопках, заголовки окон и т.п.).

Для формирования структуры ресурсов в свою очередь понадобились редакторы ресурсов, а затем и компиляторы ресурсов. Ресурсы, полученные с выхода компилятора ресурсов, стали обрабатываться компоновщиками и загрузчиками.

Весь этот комплекс программно-технических средств в настоящее время составляет понятие «система программирования». [1]

Структуру современной системы программирования можно представить в виде следующей схемы.

Текстовый ¬® Исходная ѕ® Компилятор ѕ® Объектная ѕ® Редактор ¬ѕ Библиотеки

редактор программа программа связей

Редакто𠬮 Исходный код ѕ® Компилятор ѕ® Ресурсы ѕ® Загрузчик

ресурсов ресурсов ресурсов интерфейса

Примерами современных систем программирования являются

Системы программирования Turbo Pascal, Borland Pascal, Borland Delphi, Borland C++ Builder,

Microsoft Visual Basic, Microsoft Visual C++. Новейшими системами программирования являются система, построенная на базе языка С# и системы, ориентированные на концепцию . NET .

Системы программирования языка С под ОС Linux и UNIX (функции загрузчика выполняются самой ОС) долгое время не требовали наличия интегрированной среды и вполне могли быть ограничены командными файлами компиляции. Однако стали появляться и системы программирования, построенные на базе интегрированных сред разработки. В основном они строятся в графической среде на базе стандартного графического интерфейса пользователя на основе среды X Windows .

Основным модулем системы программирования всегда является компилятор . Именно технические характеристики компилятора, прежде всего, влияют на эффективность результирующих программ, порождаемых системой программирования.

Кроме основного компилятора, большинство систем программирования могут содержать в своем составе целый ряд других компиляторов. Так, большинство систем содержат компилятор с языка ассемблера и компилятор с входного языка описания ресурсов. Но они редко непосредственно взаимодействуют с пользователем.

Напомним основные термины и понятия.

Транслятор – это программа, которая переводит входную программу на исходном (входном) языке в эквивалентную ей выходную программу на результирующем (выходном) языке.

Близко по смыслу к этому понятию понятие компилятор.

Компилятор – это транслятор, который осуществляет перевод исходной программы в эквивалентную ей объектную программу на языке машинных команд или языке ассемблера.

Таким образом, компилятор отличается от транслятора тем, что его результирующая программа написана обязательно на языке машинных команд или языке ассемблера. Результирующая программа транслятора в общем случае может быть написана на любом языке (например, транслятор с языка Pascal на язык С).

Таким образом, компиляторы – это вид трансляторов.

Напомним также, что существует еще принципиально отличное понятие «интерпретатор».

Интерпретатор – это программа, которая воспринимает входную программу на исходном языке и выполняет ее. (Интерпретатор не порождает результирующую программу и никакого результирующего кода.)

Основные блоки (фазы) компилятора, их функции

Исходная программа, написанная на некотором языке программирования, есть цепочка знаков. Компилятор в конечном итоге превращает эту цепочку знаков в цепочку битов – объектный код.

Читать еще:  Программирование ввод вывод

В процессе компиляции можно выделить следующие подпроцессы (блоки, этапы).

Работа с таблицами.

Синтаксический анализ, или разбор.

Генерация кода, или трансляция в промежуточный код (например, языка ассемблер).

Генерация объектного кода.

Замечание. В конкретных компиляторах порядок может несколько отличаться, а некоторые блоки могут объединяться в один. В реальном компиляторе блоки не обязательно разделены.

Лексический анализ

Входом является цепочка символов некоторого алфавита.

Некоторые комбинации символов в программе рассматриваются как единые объекты – лексемы (например, зарезервированные слова, идентификаторы, числовые константы).

Работа лексического анализатора состоит в том, чтобы сгруппировать определенные символы в единые синтаксические объекты – лексемы.

Выходом является последовательность лексем.

Например, в результате лексического анализа следующей цепочки символов

Cost:= (price + tax) * 0.9

будет обнаружено, что cost , price , tax являются лексемами типа идентификатор; 0.9 – лексема типа константа; :=, +, * — являются лексемами.

Работа с таблицами

Информация о лексемах собирается и записывается в одну или несколько таблиц, например, в виде списка лексем и соответствующей информации о них.

Синтаксический анализ

Вход – цепочка лексем.

На этом этапе исследуется цепочка лексем и устанавливается, удовлетворяет ли она структурным условиям, явно сформулированным в определении синтаксиса языка.

Выходом анализатора является дерево, которое представляет синтаксическую структуру, присущую исходной программе.

Генерация кода

Полученное дерево используется для перевода входной программы в программу на машинном языке, но чаще осуществляется перевод на промежуточный язык (ассемблер).

Замечание. На практике чаще одновременно строится и дерево, и код.

Существует несколько методов построения промежуточного кода по синтаксическому дереву. Основным из них является синтаксически управляемый перевод (трансляция).

На двух этапах – синтаксического разбора и в начале этапа подготовки к генерации кода – выполняется семантический анализ. Семантический анализатор проверяет семантические соглашения входного языка, проверяет элементарные семантические (смысловые) нормы языков программирования, напрямую не связанных с входным языком; дополняет внутреннее представление программы в компиляторе операторами и действиями, неявно предусмотренными семантикой входного языка.

Оптимизация кода

Попытка сделать объектные программы более эффективными (т.е. быстрее работающими или более компактными).

Так, для операций, составляющих линейный участок программы, может применяться удаление бесполезных присваиваний, исключение лишних операций, перестановка операций, арифметические преобразования.

Еще одним методом оптимизации кода является оптимизация вычисления логических выражений (не всегда полностью надо выполнять вычисление всего выражения, чтобы знать его результат, иногда по значению одного операнда можно определить значение всего выражения).

Оптимизация передачи параметров в процедуры и функции через стек не является эффективным, если выполняются несложные вычисления над небольшим количеством параметров (всякий раз при вызове процедуры компилятор создает объектный код для размещения фактических параметров в стеке, а при выходе – код для освобождения ячеек). Эффективность результирующей программы повышается при передаче параметров через регистры либо подстановкой кода функции в вызывающий объектный код.

Для оптимизации циклов используются следующие методы: вынесение инвариантных вычислений из циклов (вынесение тех операций, операнды которых не изменяются); замена операций с индуктивными переменными (изменение сложных операций с переменными, значения которых в процессе выполнения цикла образуют арифметическую прогрессию, на более простые операции); слияние и развертывание циклов (слияние двух вложенных циклов в один и замена цикла на линейную последовательность операций).

Генерация объектного кода

Последний заключительный этап. Происходит порождение команд, составляющих предложения выходного языка и в целом текст результирующей программы.

Назначение систем программирования

Для удобной разработки программ существуют специальные средства их создания, — системы (среды) программирования, которые обеспечивают весь цикл работы с программой — от ее разработки до выполнения и получения необходимых результатов.

Система программирования — это комплекс программных средств, предназначенных для автоматизации процесса подготовки и выполнения программ пользователя.

Назначение и состав систем программирования

Рассмотрим основные составляющие системы программирования:

  • Редактор текста
  • Язык программирования
  • Библиотека подпрограмм
  • Редактор связей (компоновщик)
  • Транслятор
  • Отладчик

Для сознательного понимания назначения составляющих системы программирования опишем этапы процесса разработки программы, связанные с использованием компьютера.

Редактор исходного кода

Вводим текст разработанной программы, которую называют исходным кодом, в компьютер и храним в памяти. Для этого система программирования имеет редактор текста, который обеспечивает ввод и редактирование исходного кода.

Компиляция и интерпретация

После введения программы и исправления ошибок, которые могли произойти во время ввода, осуществляется преобразование программы с языка программирования высокого уровня в двоичный код.

Такое преобразование осуществляется с помощью транслятора программ.

Различают два типа трансляторов: компиляторы и интерпретаторы.

В процессе интерпретации исходных текстов программ каждая команда (инструкция) последовательно превращается в двоичный код и сразу выполняется — на экране высвечивается результат ее выполнения. После завершения одной команды выполняется следующая и так далее до последней команды. Но результат преобразования не сохраняется, и каждый запуск программы начинается сначала.

В процессе компиляции осуществляется преобразование всего текста программного кода в двоичный код. Полученную после компиляции программу называют объектным модулем. Такая программа еще не готова к выполнению.

Исходный код обычно содержит ссылки на другие модули (подпрограммы), которые содержатся в библиотеке подпрограмм (например, модуль вычисления квадратного корня). Таким образом, к программному модуля нужно добавить коды необходимых подпрограмм, чтобы подготовить программу для исполнения.

Компилируемая программы выполняются быстрее интерпретируемых. Режим интерпретации нуждается в дополнительной основной памяти, поскольку интерпретатор должен все время храниться вместе с кодом. Но интерпретация в работе удобнее. Особенно для программистов, которые только начинают работать с системами программирования, так контролируется результат каждой команды.

Компоновка

После компиляции компоновщик (редактор связей) «склеивает» отдельные двоичные модули в единую программу, которая называется исполняемой программой. Этот процесс представлены на схеме:

Исходный код программы -> компилятор -> объектный модуль -> библиотека подпрограмм -> редактор связей -> выполняемая программа

Для дальнейшего выполнения программного кода, компилятор не нужен. Итак, после компиляции программа представлена ​​двоичными символами 1 и 0 и готова к исполнению на компьютере.

Отладка и тестирование

Полученная программа, даже если она выполняется, не гарантирует, что нет логических ошибок. Она может выполняться, но результат исполнения может быть неправильным. Поэтому нужно провести тестирование (испытания) программы на предмет выявления и устранения в ней логических ошибок.

Тестирование — достаточно ответственный этап. В крупных IT-компаниях над разработкой программ, которые называют проектами, работают десятки и даже сотни программистов разных направлений. Одни из них разрабатывают проекты, другие занимаются тестированием программ, экономическим обоснованием и тому подобное.

На этом этапе применяется отладчик программ, который позволяет пошагово анализировать программу. Отладчик позволяет выполнять трассировку программы, устанавливать и удалять контрольные точки в программах, условия приостановления выполнения программы и тому подобное.

Читать еще:  Назначение систем программирования

Создание переносимых программ

Описанный выше процесс разработки программ является классическим для процедурных языков программирования. Для программ, разработанных языком ООП, есть отличия. Их сущность заключается в том, что после компиляции создается не машинный, а промежуточный код, так называемый байт-код. С помощью специального программного обеспечения он затем превращается в машинный.

Такой подход обусловлен тем, что в Интернете свободно перемещаются данные и программы (апплеты — небольшие программы, предназначенные для передачи через Интернет и выполнения в браузере, совместимом с языком программирования). Их нужно защитить от вирусов и других вредоносных программ, а также реализовать переносимость программ.

Под переносимостью понимают возможность загрузки и выполнения апплета на компьютерах с любым типом процессора, любой операционной системой и браузером, подключен к Интернету. Именно эти проблемы и позволяет решить байт-код.

Понятно, что использование любого промежуточного кода, в том числе и байт-кода, снижает скорость выполнения программ и требует дополнительных аппаратных средств. Впрочем, эти потери незначительны по сравнению с полученным выигрышем. Если бы ООП-программа сразу компилировалась в машинный код, то для каждого компьютера со своим типом процессора необходимо было бы иметь отдельную версию той самой программы, что экономически крайне невыгодно.

Иногда используются так называемые динамические компиляторы. Их сущность заключается в том, что байт-код компилируется в машинный код не весь сразу, а отдельными фрагментами, по мере необходимости. Другие части кода могут выполняться в режиме интерпретации. Тем самым достигается высокая эффективность работы с кодом.

Примеры систем программирования

Системы (среды) программирования часто именуются по названию языка, например среда Pascal, среда Delphi. Иногда название системы содержит префикс, указывающий на разработчика среды: название системы Turbo-C означает, что ее разработчиком является фирма Borland.

Сегодня все чаще используются интегрированные среды программирования, которые обеспечивают работу с несколькими языками. Такими системами являются, например, IntelliJ IDEA, Eclipse. Вариант Ultimate Edition системы IDEA обеспечивает работу с языками программирования Java, PHP, Python.

Некоторые системы программирования поддерживают как режим интерпретации, так и режим компиляции программ.

Далее, в процессе описания языка программирования Python, мы будем применять среду IDLE.

Системы программирования

Трансляторы, компиляторы, интерпретаторы

Транслятор (англ. translator — переводчик) — это программа-переводчик. Она преобразует программу, написанную на одном из языков высокого уровня, в программу, состоящую из машинных команд.

Трансляторы реализуются в виде компиляторов или интерпретаторов. С точки зрения выполнения работы компилятор и интерпретатор существенно различаются.

Компилятор (англ. compiler — составитель, собиратель) читает всю программу целиком, делает ее перевод и создает законченный вариант программы на машинном языке, который затем и выполняется.

Интерпретатор (англ. interpreter — истолкователь, устный переводчик) переводит и выполняет программу строка за строкой.

После того, как программа откомпилирована, ни сама исходная программа, ни компилятор более не нужны. В то же время программа, обрабатываемая интерпретатором, должна заново переводиться на машинный язык при каждом очередном запуске программы.

Откомпилированные программы работают быстрее, но интерпретируемые проще исправлять и изменять.

Система программирования — это система для разработки новых программ на конкретном языке программирования.

Современные системы программирования обычно предоставляют пользователям мощные и удобные средства разработки программ. В них входят:

  • компилятор или интерпретатор;
  • интегрированная среда разработки;
  • средства создания и редактирования текстов программ;
  • обширные библиотеки стандартных программ и функций;
  • отладочные программы, т.е. программы, помогающие находить и устранять ошибки в программе;
  • «дружественная» к пользователю диалоговая среда;
  • многооконный режим работы;
  • мощные графические библиотеки; утилиты для работы с библиотеками
  • встроенный ассемблер;
  • встроенная справочная служба;
  • другие специфические особенности.

Популярные системы программирования — Turbo Basic, Quick Basic, Turbo Pascal, Turbo C.

В последнее время получили распространение системы программирования, ориентированные на создание Windows-приложений:

Borland Delphi 3.0

  • пакет Borland Delphi (Дельфи) — блестящий наследник семейства компиляторов Borland Pascal, предоставляющий качественные и очень удобные средства визуальной разработки. Его исключительно быстрый компилятор позволяет эффективно и быстро решать практически любые задачи прикладного программирования.
  • пакет Microsoft Visual Basic — удобный и популярный инструмент для создания Windows-программ с использованием визуальных средств. Содержит инструментарий для создания диаграмм и презентаций.
  • пакет Borland C++ — одно из самых распространённых средств для разработки DOS и Windows приложений.

Ниже для иллюстрации приведены на языках Бейсик, Паскаль и Си программы решения одной и той же простой задачи — вычисления суммы S элементов одномерного массива A=(a1, a2, . an).

Компьютер с нуля

Системы программирования и инструментальные среды

Очень специфический вид программного обеспечения для компьютера это системы программирования.

Система программированиякомплекс языковых и программных средств, предназначенных для автоматизации процесса составления, отладки программы и подготовки ее к выполнению.

В данный класс программного обеспечения входят средства (инструментарии) для создания других программ и программных комплексов.

В общем случае, программа — это последовательность предписаний (команд), записанных на языке, понятном некоторому исполнителю (процессору).

Язык, который понятен процессору, состоит из 0 и 1. Поэтому программа, записанная таким образом, носит название машинного кода .

Однако, такой язык не понятен для человека, поэтому для желающих писать программы были придуманы языки программирования высокого уровня (такое название было дано для того, чтобы отличить их от языков, непосредственно понятных машинам), которые позволяют быстро и понятно (для людей) записать последовательность действий, которые должен выполнить компьютер.

Общая классификация языков программирования

Уровни языков программирования

Уровень языка программирования определяет степень его удаленности от языка процессора и приближенности к естественному или формальному языку, используемого человеком. (Чем выше уровень, тем дальше он от компьютера и ближе к человеку).

На схеме изображен состав системы программирования.

Состав системы программирования

Язык программирования — это специально обусловленный набор символов, слов и мнемонических (особым образом организованных и заранее оговоренных) сокращений, используемых для записи набора команд (программы), воспринимаемых компьютером.

Синтаксис языка программирования это перечень правил записи программ из элементов этого языка.

В настоящее время существует несколько сотен языков высокого уровня, получивших название алгоритмических языков. Каждый из этих языков имеет свой синтаксис и ориентирован на решение задач определенного класса. К наиболее популярным относятся Basic, Pascal, C++, Prolog.

Для подготовки текста программы на любом алгоритмическом языке требуется специальная программа, называемая текстовым редактором, который является первым инструментом в сложном деле написания программ.

Процессор понимает только язык машинных команд. Поэтому обязательным элементом любой системы программирования является транслятор.

Транслятор (translator) — это программа, предназначенная для перевода (трансляции) описания алгоритма с одного формального языка на другой.

Этап трансляции кода программы является обязательным.

Читать еще:  Язык программирования паскаль служебные слова

Этап превращения программы, написанной на языке высокого уровня, в машинный код реализуется в двух вариантах.

1. В первом случае транслятор берет из файла программу на языке высокого уровня и переводит в программу на машинном языке всю целиком, записывая ее в файл с расширением obj. Программу, записанную в такой файл, принято называть объектным модулем, а транслятор, который выполняет такой перевод, называют компилятором . К компилируемым языкам относятся языки: Паскаль, Си, Фортран и др.

2. Во втором случае транслятор берет из файла с программой на языке высокого уровня по одному предписанию (команде), транслирует ее и сразу исполняет эту команду. Такой транслятор называют интерпретатором . К интерпретируемым языкам относятся: Бейсик, Пролог, Лисп и др.

Современные инструментальные среды (системы программирования), как правило, используют компилятор. В связи с этим не лишним будет представление о том, как же объектный модуль превращается в исполняемую программу, которая и хранится в файле с расширением ЕХЕ или СОМ.

Алгоритм получения исполняемой программы

Данное превращение осуществляет компьютерная программа, называемая редактор связей.

Редактор связей это программа, осуществляющая преобразование объектного модуля в исполняемую программу.

Объектный модуль представляет собой схему будущей программы. В нем отсутствует масса важных вещей, связанных с конкретной операционной системой, особенностями ее обмена с клавиатурой, дисплеем, диском, оперативной памятью и т.п. Редактор связей берет из специальной библиотеки (ее принято называть системной библиотекой подпрограмм) все необходимые для работы блоки (подпрограммы) и в файле с расширением ЕХЕ «склеивает» исполняемую программу из объектного модуля и этих блоков.

Таким образом, системы программирования предназначены для создания программ для компьютера и включают следующие основные компоненты:

  • текстовые редакторы (редакторы программ);
  • трансляторы (компиляторы, интерпретаторы);
  • редакторы связей.

Инструментальные среды

Раньше пользователи вводили текст программы с помощью специального или подходящего текстового редактора. Затем использовали другую программу — транслятор(компилятор) для перевода написанной программы в объектный модуль. Далее использовалась третья программа —компоновщик(называемая также сборщиком, или редактором связей), которая позволяла собрать единый исполняемый файл из отдельных модулей, а также снабжала его специальными стандартными блоками, обеспечивающими связь программы с внешними устройствами. И наконец, четвертая программа — загрузчик— загружала окончательно подготовленный исполняемый файл в оперативную память ЭВМ, который далее выполнялся по специальной команде.

Если на каком-либо этапе подготовки программы была допущена ошибка, все приходилось начинать заново. Таким образом, отладка программы была достаточно длительным, трудоемким и утомительным процессом.

В настоящее время разработаны и успешно используются системы программирования, представляющие собой единую инструментальную среду (или Turbo-среду), где в рамках одного программного пакета осуществляются все перечисленные выше операции. Кроме того, пакет обычно снабжается удобными средствами отладки программ, системой контекстной помощи и рядом дополнительных сервисных возможностей.

Инструментальная среда – это интегрированная система, которая позволяет писать, редактировать, отлаживать и запускать программы на выполнение, не выходя из самой среды.

В качестве примеров программных продуктов этого типа можно привести широко известные пакеты TurboBASIC, BorlandPascalwithObjects 7.0, Borland C++ (продукты фирмы BorlandInternationalInc.), а также QuickBASIC, QuickPascal, Quick С (продукты фирмы Microsoft) и многие другие.

Уроки 22 — 23
Понятие о программировании
Алгоритмы работы с величинами: константы, переменные, основные типы, присваивание, ввод и вывод данных
(§ 8. Что такое программирование)

Содержание урока

Что такое программирование

Что такое программирование

Кто такие программисты

Теперь вам предстоит ближе познакомиться еще с одним разделом информатики, который называется «Программирование».

Назначение программирования — разработка программ управления компьютером с целью решения различных информационных задач.

Специалисты, профессионально занимающиеся программированием, называются программистами. В первые годы существования ЭВМ для использования компьютера в любой области нужно было уметь программировать. В 1970-1980-х годах начинает развиваться прикладное программное обеспечение. Бурное распространение прикладного ПО произошло с появлением персональных компьютеров. Стало совсем не обязательным уметь программировать для того, чтобы воспользоваться компьютером. Люди, работающие на компьютерах, разделились на пользователей и программистов. В настоящее время пользователей гораздо больше, чем программистов.

Может возникнуть впечатление, что программисты теперь уже и не нужны! Но кто же тогда будет создавать все операционные системы, редакторы, графические пакеты, компьютерные игры и многое другое? Программисты, безусловно, нужны, причем задачи, которые им приходится решать, со временем становятся все сложнее.

Программирование принято разделять на системное и прикладное. Системные программисты занимаются разработкой системного программного обеспечения: операционных систем, утилит и пр., а также систем программирования. Прикладные программисты создают прикладные программы: редакторы, табличные процессоры, игры, обучающие программы и др. Спрос на высококвалифицированных программистов, как системных, так и прикладных, очень большой.

В данной главе вы познакомитесь с простейшими правилами и приемами программирования, заглянете в эту актуальную и престижную профессиональную область.

Что такое язык программирования

Для составления программ существуют разнообразные языки программирования.

Язык программирования — это фиксированная система обозначений для описания алгоритмов и структур данных.

За годы существования ЭВМ было создано много языков программирования. Наиболее известные среди них: Фортран, Паскаль, Бейсик, С (Си) и др.

Распространенными языками программирования сегодня являются С++, Java, Pascal, Basic, Python.

Что такое система программирования

Для создания и исполнения на компьютере программы, написанной на языке программирования, используются системы программирования.

Система программирования — это программное обеспе чение компьютера, предназначенное для разработки, от ладки и исполнения программ, записанных на определен ном языке программирования.

Существуют системы программирования на Паскале, Бейсике и других языках.

В данной главе речь будет идти о средствах и способах универсального программирования — не ориентированного на какую-то узкую прикладную область. Примером узкоспециализированного программирования является Web-программирование, ориентированное на создание Web-сайтов. Для этих целей, например, используется язык JavaScript. Языки Паскаль, Бейсик, Си относятся к числу универсальных языков программирования.

Разработка любой программы начинается с построения алгоритма решения задачи. Ниже мы обсудим особенности алгоритмов решения задач обработки информации на компьютере.

Коротко о главном

Программирование — область информатики, посвященная разработке программ управления компьютером с целью решения различных информационных задач.

Программирование бывает системным и прикладным.

Паскаль, Бейсик, Си, Фортран — это универсальные языки программирования.

Система программирования — это программное обеспечение компьютера, предназначенное для разработки, отладки и исполнения программ, записанных на определенном языке программирования.

Вопросы и задания

1. Что такое программирование?

2. Какие задачи решают системные и прикладные программисты?

3. Назовите наиболее распространенные языки программирования.

4. В чем состоит назначение систем программирования?

Следующая страница Компьютерный практикум ЦОР. Что такое программирование

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector