Green-sell.info

Новые технологии
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

2 системы программирования

Системы программирования

Неотъемлемой частью современных ЭВМ являются системы программного обеспечения, которые являются средствами, расширяющими возможности аппаратуры и сферу ее использования. Эти системы являются посредником между человеком и вычислительной машиной, автоматизируют выполнение определенных функций в соответствии с профилем специалистов и режимами их взаимодействия с ЭВМ. Программное обеспечение повышает эффективность труда пользователя. Программное обеспечение подразделяют на общее и специальное.

Общее программное обеспечение служит для реализации функций, связанных с работой ЭВМ. Оно состоит из операционной системы, системы программирования, программ технического обслуживания.

Специальное программное обеспечение состоит из прикладных программ, проблемно ориентированных на решение определенных задач.

Состав систем программирования

Системы программирования представляют комплексы инструментальных программных средств для работы с программами на определенном языке программирования.

Попробуй обратиться за помощью к преподавателям

Используя подобные системы программисты имеют возможность разрабатывать свои собственные компьютерные программы.

Системы программирования состоят из: трансляторов с языков высокого уровня; редактирующих и компонующих средств, а также средств загрузки программ; макроассемблеров (машинно-ориентированных языков); отладчиков машинных программ.

Языки программирования

Язык программирования составляет ядро системы программирования. Они могут быть процедурными и непроцедурными.

Процедурные (или алгоритмические) программы — это системы предписаний для решения определенных задач.

Компьютер лишь механически выполняет эти предписания.

Процедурные языки могут быть представлены языками низкого и высокого уровня.

С использованием языков низкого уровня (машинно-ориентированных) создаются программы в машинных кодах. С такими языками тяжело работать, однако созданные на них программы малы по объему и быстродейственны. Используя языки программирования низкого уровня, разрабатывают системные программы, драйвера и др.

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Программы, созданные на языках высокого уровня, представляют собой наборы заданных команд, которые близки по своему звучанию к естественному (английскому) языку.

К наиболее известным процедурным системам программирования относят:

  1. Fortran, один из старейших и по сей день используемых в решении задач математической ориентации язык.
  2. Basic, являющийся универсальным символическим кодом инструкций для начинающих пользователей, самый популярный среди пользователей.
  3. ALGOL, представляющий собой алгоритмический язык, сыгравший большую роль в теории, в настоящее время практически не используется.
  4. PL/1 — многоцелевой язык, который в настоящее время не используется.
  5. Си – широко используемый язык при создании систем программного обеспечения.
  6. Pascal – чрезвычайно популярный язык как среди новичков в программировании, так и среди профессионалов. На его основе созданы более мощные языки такие, как Ada, Delphi.
  7. COBOL – язык, ориентированный на общий бизнес, сейчас практически не используется.
  8. Delphi – очень популярный объективно-ориентированный язык визуального программирования.
  9. Java – платформенно независимый язык объективно-ориентированного программирования, эффективен при создании интерактивных web-страниц.

Среди непроцедурных языков программирования наиболее известны:

Машинно-ориентированные системы программирования

По уровню формализации входного языка, целевому назначению и структуре системы программирования делят на: машинно-ориентированные и машинно-независимые.

Машинно-ориентированные состоят из входного языка, наборов операторов и изобразительных средств. Для систем подобного типа характерны:

  • высокое качество созданных программ;
  • предсказуемость заказов памяти и объектного кода;
  • использование конкретных аппаратных ресурсов;
  • необходимость знания системы команд и особенностей функционирования конкретной ЭВМ;
  • низкая скорость программирования;
  • трудоемкость процесса программирования;
  • невозможность непосредственного использования программ, составленных на этих языках, на компьютерах других типов.

По степени автоматического программирования машинно-ориентированные системы подразделяют на классы:

  1. Машинный язык. В системе такого типа отдельный компьютер обладает своим определенным машинным языком, которому предписывается выполнение операций над операндами. Этот язык является командным.
  2. Система символического кодирования. В системах такого типа используют языки символического кодирования, являющиеся командными. Коды операций и адреса в машинных командах в языках символьного кодирования заменены символами (идентификаторами), формы написания которых помогают легче запоминать программисту смысловое содержание операции. Это способствует существенному уменьшению числа ошибок при составлении программ.
  3. Автокоды. Содержат все возможности языков символического кодирования через процесс расширенного введения макрокоманд. В различных программах часто встречаются некоторые используемые командные последовательности, соответствующие определенным процедурам преобразования информации. Эти последовательности оформляют в виде специальных макрокоманд, которые затем можно использовать в языке программирования при написании программ. Макрокоманды переводятся в машинные команды 2 способами: расстановкой и генерированием. В первом способе используются «остовы» – серии команд реализации требуемой функции, обозначенной макрокомандой. Макрокоманды передают фактические параметры, вставляемые в процессе трансляции в «остов» программы, преобразуя ее в реальную машинную программу. Системы с генерацией содержат специальные программы анализа макрокоманд, определяющие какую функцию нужно выполнить и формирующие последовательности команд, реализующих эту функцию. Обе системы используют трансляторы с языка символьного кодирования и наборы макрокоманд, являющиеся операторами автокода.
  4. Макросы. Представляют собой более сжатую форму записи, используемую для замены последовательности символов описания выполнения требуемых действий ЭВМ. Предназначены для сокращения записи исходных программ. Компонент программного обеспечения, с помощью которого обеспечивается функционирование макросов, называют макропроцессором. На него поступает макросопределяющий и исходный тексты. Реакцией макропроцессора на вызов является выдача выходного текста.

Машинно-независимые системы программирования

Эти системы программирования являются средством описания алгоритмов решения задач и обрабатываемой информации. Их удобно использовать широкому кругу пользователей, поскольку не требуется знаний особенностей организации функционирования ЭВМ.

Машинно-независимые системы программирования подразделяют на:

  1. Процедурно-ориентированные системы. В этих системах входные языки программирования предназначены для записи при решении задач алгоритмов обработки информации. Эти языки обеспечивают программиста средствами четкого формулирования задач и получения результатов в требуемой форме.
  2. Проблемно-ориентированные системы используют в качестве входного языка язык программирования с проблемной ориентацией. Языки подобного типа обеспечивают программиста средствами короткой и четкой формулировки задач и средствами получения результатов в требуемой форме. Программы на этих языках программирования записываются в терминах решаемой задачи и реализуются через выполнение определенных процедур.
  3. Диалоговые языки. Обеспечивают оперативное взаимодействие пользователя с компьютером через сохранение в его памяти копии исходной программы в машинных кодах. В процессе изменений в программе система программирования устанавливает с помощью специальных таблиц взаимосвязь между структурами исходной и объектной программ, что дает возможность в дальнейшем редактировать объектную программу.
  4. Непроцедурные языки. Составляют группу языков, с помощью которых описывается организация обрабатываемых данных и языков связи с операционными системами. Являются табличными языками, позволяющими четко описывать как задачу, так и ее решения в наглядной форме. В одной таблице решений, описывающей некоторую ситуацию, содержатся все возможные блок-схемы реализаций алгоритмов решения.

Интерпретаторы и компиляторы

Компилятор прежде чем запустить программу на выполнение полностью обрабатывает ее текст:

  • выполняет поиск синтаксических ошибок;
  • делает смысловой анализ;
  • автоматически генерирует машинный код.

Далее сгенерированный объектный код обрабатывается специальной программой — сборщиком или редактором связей. В результате текст программы преобразовывается в готовый к исполнению файл, он сохраняется в памяти компьютера или на диске. Этот файл может самостоятельно работать под управлением опера¬ционной системы.

Интерпретатор используется для анализа очередного оператора языка из текста програм¬мы и запуска его на исполнение. Перейти к выполнению следующего оператора интерпретатор может только после успешного выполнения текущего. При многократном выполнении одного и того же оператора интерпретатор каждый раз выполняет его так, будто впервые. В результате программы, содержащие большие объемы повторяющихся вычислений, работают медленно.

К основным недостаткам компиляторов можно отнести трудоемкость трансляции языков программирования, ориентированных на обработку данных сложной структуры. Используя интерпретатор, наоборот, можно остановить работу программы в любой момент, организовать диалог с пользователем, исследовать содержимое памяти, выполнить любые сложные преобразования данных и при этом постоянно осуществлять контроль за состоянием окружающей программно-аппаратной среды, благодаря чему достигают высокой надежности работы. Интерпретаторы удобно использовать при изучении про¬граммирования, так как они дают возможность понять механизм работы каждого оператора языка в отдельности.

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

Системы программирования и их компоненты

Системы программирования для компилируемых языков. В самом общем случае для создания программы на выбранном компилируемом языке программирования нужно иметь компоненты, способные реализовывать следующие этапы:

1. Набор текста программы. Лучше использовать специализированные текстовыередакторы, которые ориентированы на конкретный язык программирования и позволяют в процессе ввода текста выделять ключевые слова и идентификаторы разными цветами и шрифтами, а также автоматически проверять правильность синтаксиса программы непосредственно во время ее ввода.

2. Перевод исходного текста в машинный код с помощью программы-компилятора. Исходный текст большой программы состоит, как правило, из нескольких модулей (файлов с исходными текстами). Каждый модуль компилируется в отдельный файл с объектным кодом. Процесс компиляции обычно демонстрируется на экране: показывается, сколько строк исходного текста откомпилировано, или выдаются сообщения о найденных ошибках.

3. Объединение отдельно откомпилированных модулей программы в одно целое. Кроме того, к ним надо добавить машинный код подпрограмм, реализующих различные стандартные функции (например вычисляющих математические функции sin или Ln). Такие функции содержатся в библиотеках, которые поставляются вместе с компилятором. Сгенерированный код модулей и подключенные к нему стандартные функции надо не просто объединить в одно целое, а выполнить такое объединение с учетом требований операционной системы, то есть получить на выходе программу, отвечающую определенному формату. Это выполняет специальная программа – редактор связей или сборщик. На выходе получается работоспособное приложение – исполнимый код для конкретной платформы. Исполнимый код – это законченная программа, которую можно запустить на любом компьютере, где установлена операционная система, для которой эта программа создавалась. Как правило, итоговый файл имеет расширение .ЕХЕ или .СОМ.

Читать еще:  Объектно ориентированное программирование программы

Итак, для создания программы нужны:

В современных системах программирования имеется еще один компонент – отладчик, который позволяет анализировать работу программы во время ее выполнения. С его помощью можно последовательно выполнять отдельные операторы исходного текста по шагам, наблюдая при этом, как меняются значения различных переменных. Без отладчика разработать крупное приложение очень сложно.

Среды быстрого проектирования (визуальный подход). Серьезным препятствием для разработки графических приложений была сложность создания различных элементов управления и контроль за их работой. Достаточно взглянуть на окно любой Windows-программы. В нем имеется множество стандартных элементов управления (кнопки, пункты меню, списки, переключатели и т.д.). Очень трудоемко вручную описывать процесс создания этих элементов в соответствии с требованиями Windows, на глазок определять координаты, отслеживать их состояние с помощью специальных команд.

Этот процесс автоматизирован в средах быстрого проектирования (Rapid Application Development, RAD-среды). Все необходимые элементы оформления и управления создаются и обслуживаются не путем ручного программирования, а с помощью готовых визуальных компонентов, которые с помощью мыши «перетаскиваются» в проектируемое окно. Их свойства и поведение затем настраиваются с помощью простых редакторов, визуально показывающих характеристики соответствующих элементов. При этом вспомогательный исходный текст программы, ответственный за создание и работу этих элементов, генерируется RAD-средой автоматически, что позволяет сосредоточиться только на логике решаемой задачи. В результате программирование во многом заменяется на проектирование – подобный подход называется еще визуальным программированием.

Компоненты достаточно легко создавать самостоятельно, поэтому в мире сегодня распространяются тысячи бесплатных и платных компонентов для наиболее известных RAD-сред, из них формируются библиотеки компонентов – объектные репозитории. Компоненты выступают в роли «строительных кирпичиков», позволяющих собирать готовое приложение с богатыми возможностями, написав всего десяток строк исходного кода, и такой компонентный подход к созданию программ считается очень перспективным, потому что без лишних усилий и на законных основаниях допускает повторное использование чужого труда.

Из универсальных языков программирования сегодня наиболее популярны следующие:

Для каждого из этих языков программирования имеется немало систем программирования, выпускаемых различными фирмами и ориентированных на различные модели ПК и операционные системы. Наиболее популярны следующие визуальные среды быстрого проектирования программ для Windows:

Назначение, структура и классификация систем программирования.

СОДЕРЖАНИЕ

1. Введение. Программное обеспечение и состав программного обеспечения вычислительной техники. Требование программного обеспечения к ресурсам вычислительной техники. 3

1.2 Назначение, структура и классификация систем программирования. 7

1.2. Алгоритм. Определения. Свойства. Правило записи блок-схем согласно ЕСПД(единой системы программных продуктов). 15

Блок схема алгоритма программы.. 19

1.3. Архитектура современных ЭВМ. 21

1.4. Архитектура микропроцессоров. 27

1.5. Методология объектно-ориентированного программирования. Основы программирования на языке Ассемблер на примере учебной модели ЭВМ с компилятором Е97 (блок-схемы алгоритмов, кодирование алгоритмов, тестовые программы и оценка правильности работы программы). 32

1.6. Архитектура микропроцессоров Intel. Система команд МП серии i80x86. 39

1.7.Решение задач: 47

2. Заключение (тенденции развития методов и систем программирования). 58


1. Введение. Программное обеспечение и состав программного обеспечения вычислительной техники. Требование программного обеспечения к ресурсам вычислительной техники.

К прикладному программному обеспечению (Application software) относятся компьютерные программы, написанные для пользователей или самими пользователями, для задания компьютеру конкретной работы. Программы обработки заказов или создания списков рассылки — пример прикладного программного обеспечения. Программистов, которые пишут прикладное программное обеспечение, называют прикладными программистами.

Прикладная программа или приложение — программа, предназначеннаядлявыполненияопределенныхпользовательскихзадачирассчитаннаянанепосредственноевзаимодействиеспользователем. Вбольшинствеоперационныхсистемприкладныепрограммынемогутобращатьсякресурсамкомпьютеранапрямую, а взаимодействуют с оборудованием и проч. посредством операционной системы. Также на простом языке —вспомогательные программы

4. программные средства общего назначения

5. Текстовые редакторы

6. Системы компьютерной вёрстки

7. Графические редакторы

9. программные средства специального назначения

10. Экспертные системы

11. Мультимедиа приложения (Медиаплееры, программы для создания/редактирования видео, звука, Text-To-Speech и пр.)

12. Гипертекстовые системы (Электронные словари, энциклопедии, справочные системы)

13. Системы управления содержимым

14. программные средства профессионального уровня

20. Геоинформационные системы

21. Биллинговые системы

24. По сфере применения

Прикладное программное обеспечение предприятий и организаций. Например, финансовое управление, система отношений с потребителями, сеть поставок. К этому типу относится также ведомственное ПО предприятий малого бизнеса, а также ПО отдельных подразделений внутри большого предприятия. (Примеры: Управление транспортными расходами, Служба IT поддержки)

Программное обеспечение обеспечивает доступ пользователя к устройствам компьютера.

Программное обеспечение инфраструктуры предприятия. Обеспечивает общие возможности для поддержки ПО предприятий. Это системы управления базами данных, серверы электронной почты, управление сетью и безопасностью.

Программное обеспечение информационного работника. Обслуживает потребности индивидуальных пользователей в создании и управлении информацией. Это, как правило, управление временем, ресурсами, документацией, например, текстовые редакторы, электронные таблицы, программы-клиенты для электронной почты и блогов, персональные информационные системы и медиа редакторы.

Программное обеспечение для доступа к контенту. Используется для доступа к тем или иным программам или ресурсам без их редактирования (однако может и включать функцию редактирования). Предназначено для групп или индивидуальных пользователей цифрового контента. Это, например, медиа-плееры, веб-браузеры, вспомогательные браузеры и др.

Образовательное программное обеспечение по содержанию близко кПО для медиа и развлечений, однако в отличие от него имеет четкие требования по тестированию знаний пользователя и отслеживанию прогресса в изучении того или иного материала. Многие образовательные программы включают функции совместного пользования и многостороннего сотрудничества.

Имитационное программное обеспечение. Используется для симуляции физических или абстрактных систем в целях научных исследований, обучения или развлечения.

Инструментальные программные средства в области медиа. Обеспечивают потребности пользователей, которые производят печатные или электронные медиа ресурсы для других потребителей, на коммерческой или образовательной основе. Это программы полиграфической обработки, верстки, обработки мультимедиа, редакторы HTML, редакторы цифровой анимации, цифрового звука и т. п.

Прикладные программы для проектирования и конструирования. Используются при разработке аппаратного («Железо») и программного обеспечения. Охватывают автоматизированный дизайн (computer aided design — CAD), автоматизированное проектирование (computer aided engineering — CAE), редактирование и компилирование языков программирования, программы интегрированной среды разработки (Integrated Development Environments), интерфейсы для прикладного программирования (Application Programmer Interfaces).

Назначение, структура и классификация систем программирования.

Все программы, которые выполняются на компьютере, можно разделить на две части –прикладные и системные. Компьютеры существуют в основном для того, чтобы выполнять прикладные программы, однако понятно, в данной книге нас в первую очередь будут интересовать не прикладное, а именно системное программирование.

Все системные программы можно, тоже разделить на два класса. В один класс входят программы, предназначенные для управления оборудованием ЭВМ (и, для обеспечения эффективной эксплуатации этого оборудования), а также программы, управляющие на компьютере выполнением других программ. Кроме того, обычно сюда же включают и служебные программы для управления обрабатываемыми данными (файловую систему). Программы этого класса входят в большой комплекс системных программ, который называется операционной системой ЭВМ.

В другой класс входят системные программы, предназначенные для автоматизации процесса разработки, модификации и эксплуатации программ. Программы этого класса входят в состав системы программирования. Система программирования состоит только из таких системных программ, которые помогают писать новые программы. Система программирования является комплексом, в состав которого входят языковые, программные и информационные компоненты.

Компоненты системы программирования

1. Языки системы программирования. Сюда относятся как языки программирования, предназначенные для записи алгоритмов (Паскаль, Фортран, С, Ассемблер и т.д.), так и другие языки, которые служат для управления самой системой программирования, например, так называемый командный язык (язык командных файлов). Другие языки, входящие в систему программирования, могут предназначаться для автоматизации разработки больших программ (язык спецификации программ). Существуют три разных понятия: язык (Ассемблер), программу на этом языке и компилятор, который переводит Ассемблерные программы (на объектный язык).

2. Служебные программы системы программирования. Со многими из этих программ мы уже познакомились в нашем курсе, например, сюда входят такие программы.

1. Текстовые редакторы, предназначенные для набора и исправления текстов программ на языках программирования (обычно это исходные модули).

2. Трансляторы (компиляторы) для перевода с одного языка на другой (например, программа Ассемблера транслирует исходный модуль с языка Ассемблер на язык объектных модулей).

Читать еще:  История развития программирования паскаль

3. Редакторы внешних связей, собирающие загрузочный модуль из объектных модулей в схеме счёта со статической загрузкой и статическим связыванием.

4. Статические и динамические загрузчики, запускающие задачи на счёт.

5. Отладчики, помогающие пользователям в диалоговом режиме искать и исправлять ошибки в своих программах.

6. Оптимизаторы, позволяющие автоматически улучшать программу, написанную на определённом языке. Бывают оптимизаторы программ как на исходном языке программирования (например, на Фортране), так и на машинном языке (оптимизация загрузочных модулей).

7. Профилировщики, которые определяют, какой процент времени выполняется та или иная часть программы. Это позволяет выявить наиболее интенсивно используемые фрагменты программы и оптимизировать их или на исходном языке, или, например, переписав эти фрагменты в виде процедур на Ассемблере.

8. Библиотекари, которые позволяют создавать и изменять файлы-библиотеки процедур (например, библиотеки динамически загружаемых процедур DLL), файлы-библиотеки макроопределений, и т.д.

9. Интерпретаторы, которые могут выполнять программы без перевода их на другие языки (точнее, с построчным переводом на машинный язык и последующим выполнением каждого такого переведённого фрагмента программы).

10. И другие служебные программы.

3. Информационное обеспечение системы программирования. Сюда относятся различные структурированные описания языков, служебных программ, библиотек модулей и т.п. Без хорошего информационного обеспечения современные системы программирования эффективно работать не могут. Каждый пользователь неоднократно работал с этой компонентой системы программирования, нажимая функциональную клавишу F1 или выбирая из меню пункт Help (Помощь). На рис.1 показана общая схема прохождения программы пользователя через систему программирования. Программные модули пользователя на этом рисунке заключены в прямоугольники, а системные (служебные) программы –в прямоугольники с закруглёнными углами. На этой схеме можно проследить весь путь, по которому проходит программа от написания её текста на некотором языке программирования, до этапа счёта.

Сейчас для многих языков программирования созданы так называемые интегрированные среды, включающие в себя работающие под общим управлением почти все компоненты системы программирования. Примером такой интегрированной среды разработки программного обеспечения является знакомая большинству программистов система Турбо-Паскаль.

Рис.1. Общая схема прохождения программы через систему программирования.

На этом мы закончим описание состава системы программирования и перейдём к описанию характеристик исполняемых модулей.

Дата добавления: 2018-02-18 ; просмотров: 597 ;

Компьютер с нуля

Системы программирования и инструментальные среды

Очень специфический вид программного обеспечения для компьютера это системы программирования.

Система программированиякомплекс языковых и программных средств, предназначенных для автоматизации процесса составления, отладки программы и подготовки ее к выполнению.

В данный класс программного обеспечения входят средства (инструментарии) для создания других программ и программных комплексов.

В общем случае, программа — это последовательность предписаний (команд), записанных на языке, понятном некоторому исполнителю (процессору).

Язык, который понятен процессору, состоит из 0 и 1. Поэтому программа, записанная таким образом, носит название машинного кода .

Однако, такой язык не понятен для человека, поэтому для желающих писать программы были придуманы языки программирования высокого уровня (такое название было дано для того, чтобы отличить их от языков, непосредственно понятных машинам), которые позволяют быстро и понятно (для людей) записать последовательность действий, которые должен выполнить компьютер.

Общая классификация языков программирования

Уровни языков программирования

Уровень языка программирования определяет степень его удаленности от языка процессора и приближенности к естественному или формальному языку, используемого человеком. (Чем выше уровень, тем дальше он от компьютера и ближе к человеку).

На схеме изображен состав системы программирования.

Состав системы программирования

Язык программирования — это специально обусловленный набор символов, слов и мнемонических (особым образом организованных и заранее оговоренных) сокращений, используемых для записи набора команд (программы), воспринимаемых компьютером.

Синтаксис языка программирования это перечень правил записи программ из элементов этого языка.

В настоящее время существует несколько сотен языков высокого уровня, получивших название алгоритмических языков. Каждый из этих языков имеет свой синтаксис и ориентирован на решение задач определенного класса. К наиболее популярным относятся Basic, Pascal, C++, Prolog.

Для подготовки текста программы на любом алгоритмическом языке требуется специальная программа, называемая текстовым редактором, который является первым инструментом в сложном деле написания программ.

Процессор понимает только язык машинных команд. Поэтому обязательным элементом любой системы программирования является транслятор.

Транслятор (translator) — это программа, предназначенная для перевода (трансляции) описания алгоритма с одного формального языка на другой.

Этап трансляции кода программы является обязательным.

Этап превращения программы, написанной на языке высокого уровня, в машинный код реализуется в двух вариантах.

1. В первом случае транслятор берет из файла программу на языке высокого уровня и переводит в программу на машинном языке всю целиком, записывая ее в файл с расширением obj. Программу, записанную в такой файл, принято называть объектным модулем, а транслятор, который выполняет такой перевод, называют компилятором . К компилируемым языкам относятся языки: Паскаль, Си, Фортран и др.

2. Во втором случае транслятор берет из файла с программой на языке высокого уровня по одному предписанию (команде), транслирует ее и сразу исполняет эту команду. Такой транслятор называют интерпретатором . К интерпретируемым языкам относятся: Бейсик, Пролог, Лисп и др.

Современные инструментальные среды (системы программирования), как правило, используют компилятор. В связи с этим не лишним будет представление о том, как же объектный модуль превращается в исполняемую программу, которая и хранится в файле с расширением ЕХЕ или СОМ.

Алгоритм получения исполняемой программы

Данное превращение осуществляет компьютерная программа, называемая редактор связей.

Редактор связей это программа, осуществляющая преобразование объектного модуля в исполняемую программу.

Объектный модуль представляет собой схему будущей программы. В нем отсутствует масса важных вещей, связанных с конкретной операционной системой, особенностями ее обмена с клавиатурой, дисплеем, диском, оперативной памятью и т.п. Редактор связей берет из специальной библиотеки (ее принято называть системной библиотекой подпрограмм) все необходимые для работы блоки (подпрограммы) и в файле с расширением ЕХЕ «склеивает» исполняемую программу из объектного модуля и этих блоков.

Таким образом, системы программирования предназначены для создания программ для компьютера и включают следующие основные компоненты:

  • текстовые редакторы (редакторы программ);
  • трансляторы (компиляторы, интерпретаторы);
  • редакторы связей.

Инструментальные среды

Раньше пользователи вводили текст программы с помощью специального или подходящего текстового редактора. Затем использовали другую программу — транслятор(компилятор) для перевода написанной программы в объектный модуль. Далее использовалась третья программа —компоновщик(называемая также сборщиком, или редактором связей), которая позволяла собрать единый исполняемый файл из отдельных модулей, а также снабжала его специальными стандартными блоками, обеспечивающими связь программы с внешними устройствами. И наконец, четвертая программа — загрузчик— загружала окончательно подготовленный исполняемый файл в оперативную память ЭВМ, который далее выполнялся по специальной команде.

Если на каком-либо этапе подготовки программы была допущена ошибка, все приходилось начинать заново. Таким образом, отладка программы была достаточно длительным, трудоемким и утомительным процессом.

В настоящее время разработаны и успешно используются системы программирования, представляющие собой единую инструментальную среду (или Turbo-среду), где в рамках одного программного пакета осуществляются все перечисленные выше операции. Кроме того, пакет обычно снабжается удобными средствами отладки программ, системой контекстной помощи и рядом дополнительных сервисных возможностей.

Инструментальная среда – это интегрированная система, которая позволяет писать, редактировать, отлаживать и запускать программы на выполнение, не выходя из самой среды.

В качестве примеров программных продуктов этого типа можно привести широко известные пакеты TurboBASIC, BorlandPascalwithObjects 7.0, Borland C++ (продукты фирмы BorlandInternationalInc.), а также QuickBASIC, QuickPascal, Quick С (продукты фирмы Microsoft) и многие другие.

§ 2. Понятие о системе программирования 2.1. Основные функции и компоненты

§ 2. ПОНЯТИЕ О СИСТЕМЕ ПРОГРАММИРОВАНИЯ

2.1. ОСНОВНЫЕ ФУНКЦИИ И КОМПОНЕНТЫ

Системы программирования — это комплекс инструментальных программных средств, предназначенный для работы с программами на одном из языков программирования. Системы программирования предоставляют сервисные возможности программистам для разработки их собственных компьютерных программ.

В настоящее время разработка любого системного и прикладного программного обеспечения осуществляется с помощью систем программирования, в состав которых входят

• трансляторы с языков высокого уровня;

• средства редактирования, компоновки и загрузки программ;

• макроассемблеры (машинно-ориентированные языки);

• отладчики машинных программ.

Системы программирования, как правило, включают в себя

• текстовый редактор (Edit), осуществляющий функции записи и редактирования исходного текста программы;

•загрузчик программ (Load), позволяющий выбрать из директория нужный текстовый файл программы;

• запускатель программ (Run), осуществляющий процесс выполнения программы;

• компилятор (Compile), предназначенный для компиляции или интерпретации исходного текста программы в машинный код с диагностикой синтаксических и семантических (логических) ошибок;

• отладчик (Debug), выполняющий сервисные функции по отладке и тестированию программы;

Читать еще:  История развития языка программирования паскаль

• диспетчер файлов (File), предоставляющий возможность выполнять операции с файлами:сохранение, поиск, уничтожение и т. п.

Ядро системы программирования составляет язык. Существующие языки программирования можно разделить на две группы: процедурные и непроцедурные, рис. 2.9.

Процедурные (или алгоритмические) программы представляют из себя систему предписаний для решения конкретной задачи. Роль компьютера сводится к механическому выполнению этих предписаний.

Процедурные языки разделяют на языки низкого и высокого уровня.

Языки низкого уровня (машинно-ориентированные) позволяют создавать программы из машинных кодов, обычно в шестнадцатиричной форме. С ними трудно работать, но созданные с их помощью высококвалифицированным программистом программы занимают меньше места в памяти и работают быстрее. С помощью этих языков удобнее разрабатывать системные программы, драйверы (программы для управления устройствами компьютера), некоторые другие виды программ.

Рис. 2.9. Общая классификация языков программирования

Программы на языках высокого уровня близки к естественному (английскому)

языку и представляют набор заданных команд.

Перечислим наиболее известные системы программирования.

1. Фортран (FORmula TRANslating system — система трансляции формул); старейший и по сей день активно используемый в решении задач математической ориентации язык.

2. Бейсик (Beginner’s All-purpose Symbolic Instruction Code — универсальный символический код инструкций для начинающих); несмотря на многие недостатки и изобилие плохо совместимых версий — самый популярный по числу пользователей.

3. Алгол (ALGOrithmic Language — алгоритмический язык); сыграл большую роль в теории, но для практического программирования сейчас почти не используется.

4. ПЛ/1 (PL/I Programming Language — язык программирования первый). Многоцелевой язык; сейчас почти не используется.

5. Си (С — «си»); широко используется при создании системного программного обеспечения.

6. Паскаль (Pascal — назван в честь ученого Блеза Паскаля); чрезвычайно популярен как при изучении программирования, так и среди профессионалов. На его базе созданы несколько более мощных языков (Модула, Ада, Дельфи).

7. Кобол (COmmon Business Oriented Language — язык, ориентированный на общий бизнес); в значительной мере вышел из употребления.

8. Дельфи (Delphi) — язык объектно-ориентированного «визуального» программирования; в данный момент чрезвычайно популярен.

9. Джава (Java) — платформенно-независимый язык объектно-ориентированного программирования, чрезвычайно эффективен для создания интерактивных веб-страниц.

Среди непроцедурных языков наиболее известны

2. Пролог (PROgramming in LOGic);

3. Оккам (назван в честь философа У. Оккама).

Широкое распространение среди разработчиков программ, а также при обучении программированию, получили системы программирования «Турбо» (Turbo) фирмы Borland, ядром которых являются трансляторы с языков программирования Бейсик, Паскаль, Си, Пролог и др. Интерфейс Турбо-оболочки для любых систем программирования внешне совершенно одинаков и предоставляет пользователю стандартный набор функций и команд, описанных выше и отображаемых в главном меню системы.

Рассмотрим технологию разработки программ с использованием популярной системы программирования Турбо-Паскаль 7 (оставив знакомство с самим языком до следующей главы).

В подобных интегрированных системах программирования сделана попытка предоставить разработчику программ максимум сервисных возможностей. Помимо основных функций система Турбо-Паскаль 7 позволяет настроить компилятор на работу в трех режимах: обычном режиме MS DOS (Real), защищенном режиме (Protected) и в режиме операционной среды Windows (Windows).

После загрузки системы (файл TURBO. EXE), на экране монитора появляется интерфейсное окно, рис. 2.10.

Рис. 2.10. Вид экрана интегрированной среды Турбо-Паскаля версии 7 (монтаж)

Главное меню системы (верхняя строка экрана) содержит команды, которые позволяют осуществлять следующие виды работ:

File — работа с файлами (сохранение, загрузка, связь с операционной
системой);

Edit — работа с текстовым редактором (после загрузки системы по умолчанию
текстовый редактор находится в активном состоянии);

Search — поиск и замена фрагментов текста;

Run -запуск программы на выполнение;

Compile — компиляция программы и установка параметров компиляции;

Debug — установка параметров отладки программы;

Tools — инструментальные программные средства (ненавязчивый сервис);

Options -установка опций интегрированной среды;

Window — работа с окнами;

Help -система помощи и подсказок.

Для начала работы с системой программирования необходимо иметь проект текста программы, который можно набирать на рабочем поле окна системы. Встроенный текстовый редактор прост и максимально приспособлен для набора текстов программ на языке Паскаль. В нем предусмотрена специальная подсветка управляющих структур, команд. Удобна система контекстной помощи (Shift+Fl), которая вызовет подсказку по набираемому текущему тексту программы в любой момент и в любом месте. Впрочем, текст программы можно приготовить в любом текстовом редакторе, хранящем тексты в ASCII-кодах (например, в Лексиконе); необходимо лишь снабдить имя файла расширением. pas.

Если текст (тексты) программы был ранее сохранен на жестком диске или дискете, то он может быть загружен в поле редактирования с помощью пункта меню File.

После окончания формирования текста необходимо откомпилировать программу (пункт меню Compile). Если в программе есть ошибки, то компилятор их укажет. После исправления ошибок можно снова повторить компиляцию.

После удачной компиляции запуск программы осуществляется командой меню Run.

Но на этом этапе чаще всего работа не заканчивается. Сложные алгоритмы требуют тестирования и отладки. Многие программы составляются из отдельных модулей, требуют связи с другими программами и системами и т. д. Для решения всех этих проблем предназначены другие команды системы (Debug, Options и пр.).

Разумеется, программисту, работающему на Паскале, нет нужды самому программировать такие непростые, но часто встречающиеся операции, как вычисление значений математических функций, построение изображений простых геометрических объектов (отрезков прямых, окружностей и т. д.), очистка экрана и множество других. Высокоэффективные, тщательно отлаженные программы таких действий сведены в стандартные модули и надо лишь уметь к ним обратиться. В состав пакета библиотек стандартных модулей входят: Crt — работы с экраном, Graph — работы с графикой и другие, такие как Overlay, String, System, Turbo3, WinAPI, WinCrt, WinDos, WinPrn, WinTypes, WinProcs.

2.2. ТРАНСЛЯЦИЯ ПРОГРАММ И СОПУТСТВУЮЩИЕ ПРОЦЕССЫ

С появления первых компьютеров программисты серьезно задумывались над проблемой кодирования компьютерных программ. Уже с конца 40-х годов стали появляться первые примитивные языки программирования высокого уровня. В них программист записывал решаемую задачу в виде математических формул, а затем, используя специальную таблицу, переводил символ за символом, преобразовывал эти формулы в двухлитерные коды. В дальнейшем специальная программа (впоследствии названная интерпретатором) превращала эти коды в двоичный машинный код. Первый компилятор был разработан Г. Хоппер в начале 50-х годов; он осуществлял функцию объединения команд и в ходе трансляции производил организацию подпрограмм, выделение памяти компьютера, преобразование команд высокого уровня (в то время псевдокодов) в машинные команды. В дальнейшем компиляторы и интерпретаторы для языков Ассемблера стали развиваться и прочно вошли в практику компьютерного дела.

Идеи трансляции (перекодирования) одних символов в другие легли в основу создания различных языков программирования с соответствующими трансляторами — компиляторами и/или интерпретаторами. Отличие компиляторов от интерпретаторов заключается в процедуре трансляции текста в машинный код. Компилятор преобразует весь текст программы в последовательный набор машинных команд, который в дальнейшем отправляется на выполнение (пример компилятора с языка Паскаль). Интерпретатор же осуществляет трансляцию по принципу синхронного перевода. Каждая отдельная строка программного текста транслируется, а затем, после ее интерпретации, команды этой строки выполняются (пример языка Бейсик). Современные трансляторы с языков программирования высокого уровня, систем управления базами данных интегрируют в себе возможности и достоинства компиляторов и интерпретаторов, а в системы программирования добавляют различные сервисные утилиты по трансляции и отладке создаваемых программ.

Важнейшим элементом в развитии систем программирования выступили подпрограммы. Появление аппарата подпрограмм существенно облегчило процесс разработки системных и прикладных программ. Подпрограммы позволили формировать библиотеки из наиболее часто употребляемых в программах алгоритмов — процедур и функций. В системах программирования обязательно присутствуют стандартные (встроенные в систему) библиотеки подпрограмм. Например, в их число входят подпрограммы вычисления математических функций sin(х), cos(x), abs(х) и др.

В настоящее время распространены пользовательские и прикладные библиотеки подпрограмм. Их число увеличивается. Меняется структура библиотечных подпрограмм. В современных языках получили распространение модули (Unit), представляющие специализированные пакеты взаимосвязанных подпрограмм определенного предназначения, например по работе с клавиатурой, с графикой и пр. Развитие объектно-ориентированного программирования позволило создавать библиотеки объектов и подпрограмм с объектными типами данных (Object). Примером могут служить оболочки типа TurboVision.

Современная программа представляет набор команд, операторов и выражений, в которых имеются ссылки (прямые или косвенные) на различные подпрограммы из существующих в системе программирования библиотек, модулей, объектов. В этой связи исходный текст программы, как правило, занимает по объему места в памяти в несколько раз меньше, чем его оттранслированный вариант в машинных кодах. Как это происходит?

Рассмотрим один из вариантов трансляции программы с языка программирования Паскаль. Исходный текст программы решения квадратного уравнения представлен ниже:

Ссылка на основную публикацию
Adblock
detector