Green-sell.info

Новые технологии
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Многокритериальная оптимизация онлайн

Генетические алгоритмы многокритериальной оптимизации

Оптимизация по нескольким критериям требует применения специальных методов, которые существенно отличаются от стандартной техники, ориентированной на оптимизацию одной функции.

Без потери общности задачу многокритериальной оптимизации можно сформулировать следующим образом:

Здесь пространство поиска решений определяется следующим образом

В случае многокритериальной оптимизации иногда используется графическая интерпретация как пространстве поиска решений , так и пространстве критериев

где — вектор значений целевых функций. Другими словами является множеством образов в .

5.1. Концепция доминирования Парето

Следует отметить, что многокритериальные задачи принципиально отличаются от однокритериальных. В последнем случае мы пытаемся найти решение, которое лучше всех остальных решений. В случае многокритериальной оптимизации необязательно существует решение, которое является лучшим относительно всех критериев вследствие возможных конфликтов. Решение может быть лучшим относительно одного критерия и худшим относительно других критериев.

Поэтому при многокритериальной оптимизации выполняется поиск не одной особи, а множество хромосом, оптимальных в смысле Парето [1,2,3]. Обычно пользователь имеет возможность выбирать оптимальное решение из этого множества .

Для этих целей удобно классифицировать потенциальные решения многокритериальной проблемы на доминируемые и недоминируемые решения . Решение называется доминируемым, если существует решение , не хуже чем по всем критериям, то есть для всех оптимизируемых функций :

для всех при максимизации функции и

для всех при минимизации функции .

Если решение не доминируемо никаким другим решением, то оно называется недоминируемым или оптимальным в смысле Парето. Концепция Парето оптимальных решений представлена на рис.5.1, где в пространстве критериев квадратики соответствуют Парето оптимальным решениям, а ромбики – неоптимальным. При этом точка в пространстве поиска решений является действенной (эффективной), если и только если ее образ в является не доминируемым.

Присущие ГА свойства способствуют их эффективному применению при решении задач многокритериальной оптимизации , поскольку ГА основаны на использовании множества потенциальных решений — популяции и глобальном поиске в нескольких направлениях. Напомним, что ГА не предъявляют никаких требований к виду целевых функций и ограничениям.

Пусть и — родители и потомки текущей популяции . Тогда общая структура многокритериального ГА может быть представлена следующим образом:

Фактически ГА относится к методам мета-стратегии. При применении ГА для решения конкретной задачи необходимо выбрать или разработать основные компоненты, такие как метод кодирования потенциального решения, генетические операторы кроссинговера и мутации, метод отбора родителей, построить фитнесс-функцию, позволяющую оценивать потенциальные решения и т.д.

Поскольку многокритериальная оптимизация является естественным развитием обычной численной или комбинаторной оптимизации, то многие разработанные методы были распространены на этот более общий случай. При использовании ГА для многокритериальной оптимизации центральным вопросом является построение фитнесс-функции. За последние десятилетия, следуя [2], разработано несколько подходов, которые можно разделить на представленные ниже три поколения:

  • Поколение 1. Векторная оценка (vector evaluated -veGA) [5].
  • Поколение 2. Ранжирование по Парето + Разнообразие:Многокритериальный ГА (multiobjective GA — moGA) [6].
  • Поколение 3. Взвешенная сумма + Элитизм:Случайный взвешенный ГА (rwGA) [7]; Адаптивный взвешенный ГА (awGA)[8]; Недоминируемый ГА на основе сортировки (nsGA) [9]; Интерактивный ГА с адаптивными весами (i-awGA) [10].

Далее мы рассмотрим эти методы более подробно.

Многокритериальная оптимизация и анализ моделей на чувствительность. Теория многокритериальной оптимизации по Парето

Открытие и практическое применение линейного программирования было оценено мировой научной общественностью как одно из величайших достижений в области моделирования управленческих решений. За это достижение мирового значения американцу Т.Купмасу и советскому математику-экономисту Л.В.Канторовичу в 1975 г. была присуждена Нобелевская премия по экономике.

Однако, при всех безусловных и качественно новых, ранее недоступных возможностях исследований экономики с помощью линейного программирования оно обладает и рядом недостатков. Один из наиболее важных, часто оказывающий существенное влияние на системный анализ экономических процессов недостаток заключается в том, что оценка качества управления осуществляется по численному значению одной целевой функции. На практике же эту оценку часто приходится проводить одновременно по нескольким показателям. Поясним на примерах.

Хорошо известно, что стремление к максимизации прибыли при многих сделках одновременно сопутствует возрастание риска при этом.

Для опытных менеджеров «золотой серединой» оказывается недобор прибыли по отношению к потенциально возможной при достаточно высокой надежности при принятии решений в части избежать нежелательно рискованных потерь.

Другой хорошо известный пример: стремление к максимизации прибыли при минимальных затратах. Очевидно, что с системных позиций такие противоречивые устремления менеджера просто невозможны, так как прирост прибыли в процессе производства всегда связан с дополнительными производственными (переменными) издержками. Минимизировать издержки можно лишь ничего не производя; тогда издержки минимальны, но и прибыль равна нулю. Можно, однако, поставить задачу производства заданного объема продукции при минимальных затратах. Это вполне реальная постановка, но получается однокритериальная задача (минимум затрат).

Итак, на содержательном уровне многокритериальная задача может оказаться противоречивой, т.е. не содержать решения. Но практика такие задачи действительно выдвигает. Следовательно, математика должна искать разумные, адекватные практике, подходы.

Простейшая попытка – записать задачу по аналогии с однокритериальной:

Здесь f1(x),K fn(x) — желательные критерии оптимальности,

Ax= =0 — совокупность в общем виде линейных ограничений,

x — вектор искомых переменных.

Все выражения в (3.1) мы устремляем к максимуму, опираясь на известное свойство о том, что если в реальном критерии имеет место стремление к минимуму

Посмотрим на самых простых примерах, к чему может привести постановка (3.1), (3.2).

Посмотрим на самых простых примерах, к чему может привести постановка (3.1), (3.2). Возьмем одномерный случай и на рисунке изобразим возможные сочетания для трех критериев, полагая, что все критерии устремлены к максимуму (рис.5.1).

Как мы видим из рисунка, математические схемы вполне соответствуют отмеченному выше содержательному смыслу: при одном и том же множестве ограничений оптимальное значение по каждому из трёх критериев f1(x), f2(x), f3(x) будет разным, и это зависит от угла наклона соответствующих прямых f1(x), f2(x), f3(x). При возрастающей целевой функции максимум достигается на правой границе (а), при убывающей целевой функции максимум достигается на левой границе (б), если функция постоянна, то любое допустимое значение x обеспечивает максимум (и минимум) функционала.

Следовательно, многокритериальную задачу нужно решать, не добиваясь максимума или минимума для каждого функционала в отдельности, а построить «комплексную» целевую функцию, включающую частные функционалы: , и для функции искать оптимальное значение xmax. В итоге, мы все равно сводим задачу к однокритериальной, хотя на содержательном уровне она будет отражать многокритериальные тенденции.

Различными авторами рассматривались способы выбора функций . Мы рассмотрим один способ, связанный с именем Парето. Преимущество данного способа, во-первых, в том, что он не «портит» структуру задачи линейного программирования (функционал остается линейным); во-вторых, на формальном уровне хорошо отвечает многим содержательно ясным предпосылкам. Объем вычислений при этом может существенно возрастать, но качественно решаемые дополнительные задачи остаются однотипными, требуя лишь многократного применения на ЭВМ одинакового программного обеспечения. Т.е. повышается только механическая трудоемкость решения задачи при неизменном ее качественном уровне.

Читать еще:  Оптимизатор памяти для андроид

Поставим задачу линейного программирования с k-й целевой функцией ( k-1l ) в виде:

После решения всех задач типа (3.3) будем иметь l оптимальных значений функционалов. Обозначим их через .

Поставим следующую однокритериальную задачу максимизации по Парето и изучим ее свойства:

где и , — соответственно весовые коэффициенты и нормирующие числа для частных критериев F k:

Весовые коэффициенты a k для частных критериев F k, как правило, задаются лицом, принимающим решения, экспертным образом и отражают его взгляды на значимость каждого частного критерия.

Оптимальное решение задачи (3.4) при некотором фиксированном наборе весов a k называют эффективной точкой по Парето. Множество всех эффективных точек при возможных допустимых значениях называют множеством Парето. Это множество обладает свойствами достижения компромиссов при различных весах частных критериев. Покажем, в каком смысле это понимается.

Допустим, что при некотором заданном наборе весовых коэффициентов a 1, a 2. a l, и известных значениях функционалов при k-ом частном критерии , путем решения однокритериальной задачи (3.4) найдена оптимальная эффективная точка и оптимальное значение функционала F k .Утверждается, что если есть другая эффективная точка при тех же весах , для которой некоторые значения больше соответствующих значений оптимального эффективного решения, то всегда будет по крайней мере одно значение .

Первый вывод: противостоящим сторонам нельзя достичь компромисса, имея одинаковые веса частных критериев, если одна сторона стремится выиграть по всем частным показателям одновременно. По крайней мере, по одному из них неизбежна уступка.

Допустим противное, т.е. что . Тогда, согласно (3.4), для всех (поскольку они одинаковы в обоих вариантах) будет и соответственно,

Так как в функционале (3.4) остальные компоненты для обоих вариантов одинаковы, то окажется, что оптимальной значение будет меньше альтернативной величины , что противоречит исходному утверждению об оптимальности .

Второй вывод: может существовать множество эффективных точек. На содержательном уровне это означает наличие множества условий, выражающихся приоритетами частных интересов, при которых возможно достижение компромисса. Следует понимать, что исходя из произвольных начальных условий, достижение компромисса между конфликтующими сторонами не всегда возможно.

Из практики известны случаи, когда стороны, сев за стол переговоров, ни о чем не смогли договориться. На системном уровне это означает, что процесс переговоров не был сторонами предварительно смоделирован, не было установлено, что множество эффективных точек пусто или не имеет пересечений (т.к. нет точек взаимных интересов и возможности взаимных уступок). Т.е. переговоры не были предварительно подготовлены и начинать их было бесполезно.

Именно это свойство системной организованности и системной подготовленности дает основание включить этот параграф в курс системного анализа.

Тема 3.5. Многокритериальная оптимизация

Выбор критерия оптимизации. Система ограничений экономико-математической модели. Компромиссные методы векторной оптимизации. Парето – оптимальные решения.

В практической деятельности часто встречаются задачи, заключающиеся в поиске лучшего (оптимального) решения при наличии различных несводимых друг к другу критериев оптимальности. Например, принятие решения о строительстве дороги в объезд города должно учитывать такие факторы, как выигрыш города в целом по соображениям экологии, проигрыш отдельных предприятий и фирм, например, из-за уменьшения проезжающих через город потенциальных покупателей и многие другие. Если такого рода задачи решаются методами математического программирования, то говорят о задачахмногокритериальной оптимизации. Эти задачи могут носить как линейный, так и нелинейный характер. Поскольку методы решения таких задач излагаются ниже на примере линейных многокритериальных оптимизационных задач, это объясняет рассмотрение этой темы в данной главе учебного пособия.

Задачи многокритериальной оптимизации возникают в тех случаях, когда имеется несколько целей, которые не могут быть отражены одним критерием (например, стоимость и надежность). Требуется найти точку области допустимых решений, которая минимизирует или максимизирует все такие критерии. Если в подобного рода задачах речь идет не о разнородных критериях некоторой системы, а о сопоставлении однородных критериев разных ее подсистем (например, отрасли, группы населения и т.п.), то эти задачи называются задачами векторной оптимизации.

Обозначим 1-й частный критерий через , где — допустимое решение, а область допустимых решений — через Q. Если учесть, что изменением знака функции всегда можно свести задачу минимизации к задаче максимизации, то кратко задачу многокритериальной оптимизации можно сформулировать следующим образом:

(3.28)

(3.29)

Некоторые частные критерии могут противоречить друг другу, другие действуют в одном направлении, третьи — индифферентны, безразличны друг к другу. Поэтому процесс решения многокритериальных задач неизбежно связан с экспертными оценками как самих критериев, так и взаимоотношений между ними. Известен ряд методов решения задач многокритериальной оптимизации:

— оптимизация одного признанного наиболее важным критерия, остальные критерии при этом играют роль дополнительных ограничений;

— упорядочение заданного множества критериев и последовательная оптимизация по каждому из них (этот подход рассмотрен ниже на примере метода последовательных уступок;

— сведение многих критериев к одному введением экспертных весовых коэффициентов для каждого из критериев таким образом, что более важный критерий получает более высокий вес.

Возвращаясь к задаче многокритериальной оптимизации в общей постановке (3.28), (3.29), отмстим, что в идеальном случае можно вести поиск такого решения, которое принадлежит пересечению множеств оптимальных решений всех однокритериальных задач. Однако такое пересечение обычно оказывается пустым множеством, поэтому приходится рассматривать так называемое переговорное множество эффективных решений (оптимальных по Парето). Критерий оптимальности итальянского экономиста В. Парето применяется при решении таких задач, когда оптимизация означает улучшение одних показателей при условии, чтобы другие не ухудшались.

Определение 3.1. Вектор называется эффективным (оптимальным по Парето) решением задачи (3.28), (3.29), если не существует такого вектора , что

(3.30)

причем хотя бы для одного значения i имеет место строгое неравенство.

Множество допустимых решений, для которых невозможно одновременно улучшить все частные показатели эффективности (т.е. улучшить хотя бы один из них, не ухудшая остальных), принято называть областью Парето, или областью компромиссов, а принадлежащие ей решения — эффективными, или оптимальными по Парето.

В общем случае эффективные решения не эквивалентны друг другу, так что про два оптимальных по Парето решения нельзя сказать, какое из них лучше. Поэтому при решении многокритериальных задач необходимо дополнительное изучение эффективных решений. Для этого можно было бы сформулировать некоторый критерий и оптимизировать его на множестве эффективных решений. Однако при этом возникают значительные трудности в связи с тем, что, как правило, область компромиссов не является выпуклой, и полученная задача в общем случае будет задачей невыпуклого программирования. Обычный подход заключается в стремлении «свернуть» частные критерии в один обобщенный скалярный критерий, оптимизация которого приводит к оптимальному решению задачи в целом. Формулировка подходящего обобщенного критерия в зависимости от конкретных условий как раз и является основным вопросом, который изучается в многокритериальной оптимизации.

Читать еще:  Как оптимизировать приложение на планшете

В некоторых случаях вместо одного обобщенного критерия и решения одной соответствующей задачи скалярной оптимизации предлагается рассматривать последовательность обобщенных критериев и последовательность задач скалярной оптимизации. К сожалению, многие из описанных в литературе подобных процедур не всегда приводят к эффективным решениям.

Рассмотрим один из таких методов решения многокритериальных задач — метод последовательных уступок.

Метод последовательных уступок решения задач многокритериальной оптимизации применяется в случае, когда частные критерии могут быть упорядочены в порядке убывания их важности. Предположим, что все частные критерии максимизируются и пронумерованы в порядке убывания их важности. Находим максимальное значение , первого по важности критерия в области допустимых решений, путем решения однокритериальной задачи

Затем, исходя из практических соображений и принятой точности, назначается величина допустимого отклонения 8, > 0 (экономически оправданной уступки) критерия Z, и находится максимальное значение второго критерия Z’2 при условии, что значение первого критерия не должно отклоняться от своего максимального значения более чем на величину допустимой уступки, т.е. решается задача:

Снова назначается величина уступки δ2 > 0 по второму критерию, которая вместе с первой уступкой используется для нахождения условного максимума третьего частого критерия:

Аналогичные процедуры повторяются до тех пор, пока не будет выявлено максимальное значение последнего по важности критерия Zm при условии, что значение каждого из первых т — 1 частных критериев отличается от соответствующего условного максимума не более чем на величину допустимой уступки по данному критерию. Полученное на последнем этапе решение считается оптимальным. Следует заметить, что этот метод не всегда приводит к эффективному решению.

Пример 3.7. Решение задачи многокритериальной оптимизации методом последовательных уступок.

Решение. Пусть задача трехкритериальной оптимизации имеет вид

(3.31)

(3.32)

(3.33)

(3.34)

Заметим, что так как коэффициенты при одних и тех же переменных в данных частных критериях имеют разные знаки, то в заданной области допустимых решений невозможно одновременно улучшить все частные критерии, т.е. в рассматриваемом случае область компромиссов (область Парето) совпадает с областью допустимых решений (3.34).

Для определенности будем считать, что допустимые уступки по первым двум критериям заданы: δ1 = 3; δ3 = 5/3.

Максимизируем функцию Z3 в области допустимых решений, т.е. решаем одну критериальную задачу (3.31), (3.34). Это несложно сделать рассмотренным в главе 2 графическим методом решения задач линейного программирования (рис. 3.3).

Максимум функции Z1 при условиях (3.34) достигается в точке А области Q с координатами (1; 4), так что в данном случае

Переходим к максимизации функции Z, при условиях (3.34) и дополнительном ограничении, позволяющем учесть, что по критерию Z, нельзя уступать более чем на δ1. Так как в нашем примере , то дополнительное ограничение будет иметь вид

(3.35)

Задачу (3.32), (3.34), (3.35) также решаем графически (рис. 3.4).

Получаем, что максимум функции Z2 при условиях (3.34), (3.35) достигается в точке В части Q, области Q, так что

Теперь уступаем по критерию Z2 на величину уступки 52= 5/3 и получаем второе дополнительное ограничение:

(3.36)

Максимизируем функцию Z3 при условиях (3.34), (3.35) и (3.36). Решение этой задачи представлено на рис 3.5.

Таким образом, получаем оптимальное решение рассматриваемой трехкритериальной задачи (точка С на рис. 3.5):

Соответствующие значения частных критериев при этом составляют:

Однокритериальная и многокритериальная

Оптимизация

В зависимости от количества выбранных критериев различают задачи однокритериальной и многокритериальной оптимизации. Задача однокритериальной оптимизации заключается в выборе варианта решения, наилучшим образом соответствующего единственной цели. Многокритериальная задача состоит в поиске среди конечного или бесконечного множества допустимых решений (определенных явно или через ограничения) «лучшего» решения с учетом совокупности критериев.

В большинстве методов математического программирования предполагается оценка по одному критерию. Однако в реальных технологических задачах всегда бывает несколько целей, поэтому задача многокритериальной оптимизации более жизненна.

Так как многокритериальная оптимизация связана с рядом серьёзных трудностей, её часто сводят к однокритериальной путём «огрубления». В одних случаях выбирают наиболее важный критерий, а остальные отбрасывают. В других используют «пороговую» оптимизацию, когда оптимизируется наиболее важный критерий, а для других устанавливается допустимый уровень.

Рассмотрим задачу многокритериальной оптимизации следующего вида:

Таким образом, задано m функций или функционалов fi, отображающих множество D – допустимых решений n-мерных векторов x =1, … , хn) во множество вещественных чисел R. Предполагается, что выбор оптимальных значений x производится не во всем n-мерном пространстве R n , а лишь в пределах некоторого его подмножества D. Например, можно интерпретировать задачу (6.1) как задачу оптимального выбора параметров х1, … , хn некоторой системы, качество функционирования которой оценивается показателями f1, … , fm. В этом случае ограничение x ÎD отражает технологические и иные возможности реализации тех или иных значений хi. Кроме того, часть ограничений может формироваться на основе имеющейся априорной информации, позволяющей исключить из рассмотрения заведомо неудачные варианты x.

Важнейшее значение при исследовании задач (6.1) имеет принцип Парето и связанные с ним понятия эффективного (Парето-оптимального) и слабо эффективного решения. Для сведения задачи многокритериальной оптимизации (6.1) к некоторой ее однокритериальной версии можно использовать следующие традиционные «инженерные» методы [13].

Метод главного критерия

В методе главного критерия в качестве целевой функции выбирается один из функционалов fi, наиболее полно с точки зрения исследователя отражающий цель. Остальные требования к результату, описываемые функционалами f2, … , fm, учитываются с помощью введения необходимых дополнительных ограничений.

Таким образом, вместо задачи (6.1) решается другая, уже однокритериальная задача следующего вида:

В результате получили более простую задачу поиска максимума функционала f1 на новом допустимом множестве D′ при ограничениях вида fi(x) ≥ ti, показывающих, что согласны не добиваться максимальных значений для функционалов f2, … , fm, сохраняя требование их ограниченности снизу на приемлемых уровнях. Однако, переход от задачи (6.1) к задаче (6.2) не есть переход от одной эквивалентной задачи к другой. Произошло существенное изменение исходной постановки задачи, которое в каждой конкретной ситуации требует отдельного обоснования. Применение этого метода на интуитивном уровне обычно наталкивается на трудности, связанные с возможным наличием нескольких «главных» критериев, находящихся в противоречии друг с другом. Кроме того, не всегда ясен алгоритм выбора нижних границ ti. Их необоснованное задание может привести, в частности, к пустому множеству D′.

Читать еще:  Оптимизация по prefetch что это

Метод линейной свертки

Это наиболее часто применяемый метод «скаляризации» (свертки) задачи (6.1), позволяющий заменить векторный критерий оптимальности f = (f1, … , fm) на скалярный J׃ D → R. Он основан на линейном объединении всех частных целевых функционалов f1, … , fm в один:

Весовые коэффициенты ai могут при этом рассматриваться как показатели относительной значимости отдельных критериальных функционалов fi. Чем большее значение придается критерию fj, тем больший вклад в сумму (6.3) он должен давать, и, следовательно, тем большее значение aj должно быть выбрано. При наличии существенно разнохарактерных частных критериев обычно бывает достаточно сложно указать окончательный набор коэффициентов ai, исходя из неформальных соображений, связанных, как правило, с результами экспертного анализа.

Метод максиминной свертки

Этот метод обычно применяется в форме:

В отличие от метода линейной свертки на целевой функционал J(x)оказывает влияние только тот частный критерий оптимальности, которому в данной точке x соответствует наименьшее значение соответствующей функции fi(x). И если в случае (6.3) возможны «плохие» значения некоторых fi за счет достаточно «хороших» значений остальных целевых функционалов, то в случае максиминного критерия производится расчет «на наихудший случай» и по значению J(x)можно определить гарантированную нижнюю оценку для всех функционаловfi(x). Этот факт расценивается как преимущество максиминного критерия перед методом линейной свертки.

При необходимости нормировки отдельных частных целевых функционалов, т. е. приведения во взаимное соответствие масштабов измерения значений отдельных fi(x), используется «взвешенная» формула максиминного критерия:

где весовые коэффициенты ai удовлетворяют требованиям (6.3). Подбирая различные значения ai, можно определенным образом воздействовать на процесс оптимизации, используя имеющуюся априорную информацию.

Критерии оптимизации ТПШИ

Критериями оптимизации технологических процессов наиболее целесообразно выбирать такие характеристики ТП, как время изготовления изделия (Т),технологическую себестоимость (С) и капитальные затраты (К). С целью создания эффективного метода оптимизации технологических процессов было введено понятие упрощенных характеристик ТП. Упрощенные характеристики технологических процессов аналитически связаны с его внутренними характеристиками и линейно переходят с элементов низших уровней структуры ТП на элементы более высоких уровней. Элементами низшего уровня (базовыми элементами) ТПШИ являются технологические операции.

Таким образом, упрощенные характеристики представляют собой арифметическую сумму характеристик технологических операций. Упрощенные характеристики элементов ТПШИ и самого ТПШИ определяют предельные возможности технологии, не учитывая ограничений организационного характера. Все ограничения учитываются фактическими характеристиками ТПШИ [10].

Многокритериальная оптимизация

Многокритериальная оптимизация [multi-criterion optimi­zation] — 1. Метод решения задач, которые состоят в поиске лучшего (оптимального) решения, удовлетворяющего нескольким несводимым друг к другу критериям. 2. Соответствующий раздел математического программирования.

Например, надо принять решение о постройке шоссейной дороги в объезд города. Приходится при этом учитывать такие разнородные факторы и интересы разных субъектов, как выигрыш города в целом (меньше машин, чище воздух), проигрыш отдельных горожан (пассажиры, проезжающие через город, могут останавливаться на обед, покупать сувениры и т.п., а теперь это оказывается невозможным), повышение безопасности движения, время, затрачиваемое транспортом на проезд через город и объезд вокруг него и т.д.

Для решения таких задач с помощью компьютера требуется их формализация, которая неизбежно связывается с экспертными оценками как самих критериев, так и взаимоотношений между ними (одни критерии противоречат друг другу, другие, наоборот, действуют в одном направлении, третьи — индифферентны, безразличны друг к другу). Поиски средств формализации многокритериальных задач — молодая, развивающаяся область исследований. Известен ряд способов решения многокритериальных задач:

а) оптимизация одного критерия (почему-либо признанного наиболее важным); остальные при этом играют роль дополнительных ограничений;

б) упорядочение заданного множества критериев и последовательная оптимизация по каждому из них (см. Лексикографическое упорядочение);

в) сведение многих критериев к одному путем введения априорных (экспертных) весовых коэффициентов для каждого из критериев (более важный критерий получает более высокий вес).

Термин «многокритериальные задачи» часто отождествляется с термином «задачи век­торной оптимизации«; однако прослеживается различие: в последнем случае речь идет не о разнородных критериях системы, а о сопоставлении однородных критериев разных участников (см. рис. к статье Оптимальность по Парето).

Нельзя также оба эти термина смешивать с термином «многоэкстремальные задачи«, для которых характерны не разные критерии, а наличие у целевой функции не только глобального (возможно и не единственного) экстремума, но и локальных экстремумов.

Экономико-математический словарь: Словарь современной экономической науки. — М.: Дело . Л. И. Лопатников . 2003 .

Смотреть что такое «Многокритериальная оптимизация» в других словарях:

Многокритериальная оптимизация — или программирование (англ. Multi objective optimization),[1][2] это процесс одновременной оптимизации двух или более конфликтующих целевых функций в заданной области определения. Задача многокритериальной оптимизации встречаются во… … Википедия

многокритериальная оптимизация — 1. Метод решения задач, которые состоят в поиске лучшего (оптимального) решения, удовлетворяющего нескольким несводимым друг к другу критериям. 2. Соответствующий раздел математического программирования. Например, надо принять решение о постройке … Справочник технического переводчика

Оптимизация (математика) — У этого термина существуют и другие значения, см. Оптимизация. Оптимизация в математике, информатике и исследовании операций задача нахождения экстремума (минимума или максимума) целевой функции в некоторой области конечномерного векторного … Википедия

ОПТИМИЗАЦИЯ, МНОГОКРИТЕРИАЛЬНАЯ — метод решения задач, который состоит в отыскании лучшего (оптимального) решения, удовлетворяющего нескольким несводимым друг к другу критериям … Большой экономический словарь

Векторная оптимизация — [vector optimization] комплекс методов решения задач математического программирования, в которых критерий оптимальности представляет собой вектор, компонентами которого являются в свою очередь несводимые друг к другу критерии оптимальности… … Экономико-математический словарь

векторная оптимизация — Комплекс методов решения задач математического программирования, в которых критерий оптимальности представляет собой вектор, компонентами которого являются в свою очередь несводимые друг к другу критерии оптимальности подсистем, входящих в данную … Справочник технического переводчика

многоцелевая оптимизация — многокритериальная оптимизация Процесс поиска оптимального решения задачи с учетом нескольких критериев одновременно. [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый словарь справочник. Под редакцией Ю.М. Горностаева.… … Справочник технического переводчика

Скалярная оптимизация — [sca­lar optimization] совокупность методов решения задач математического программирования, целевая функция которых представляет собой скаляр. Боль­­шинство задач, рассматриваемых в словаре (см. Линейное программирование, Нелинейное… … Экономико-математический словарь

скалярная оптимизация — совокупность методов решения задач математического программирования, целевая функция которых представляет собой скаляр. Большинство задач, рассматриваемых в словаре (см. Линейное программирование, Нелинейное программирование, Дискретное… … Справочник технического переводчика

Березовский, Борис Абрамович — Борис Абрамович Березовский … Википедия

Ссылка на основную публикацию
Adblock
detector