Green-sell.info

Новые технологии
9 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Среднее стандартное отклонение в excel

Расчет среднего квадратичного отклонения в Microsoft Excel

Одним из основных инструментов статистического анализа является расчет среднего квадратичного отклонения. Данный показатель позволяет сделать оценку стандартного отклонения по выборке или по генеральной совокупности. Давайте узнаем, как использовать формулу определения среднеквадратичного отклонения в Excel.

Определение среднего квадратичного отклонения

Сразу определим, что же представляет собой среднеквадратичное отклонение и как выглядит его формула. Эта величина является корнем квадратным из среднего арифметического числа квадратов разности всех величин ряда и их среднего арифметического. Существует тождественное наименование данного показателя — стандартное отклонение. Оба названия полностью равнозначны.

Но, естественно, что в Экселе пользователю не приходится это высчитывать, так как за него все делает программа. Давайте узнаем, как посчитать стандартное отклонение в Excel.

Расчет в Excel

Рассчитать указанную величину в Экселе можно с помощью двух специальных функций СТАНДОТКЛОН.В (по выборочной совокупности) и СТАНДОТКЛОН.Г (по генеральной совокупности). Принцип их действия абсолютно одинаков, но вызвать их можно тремя способами, о которых мы поговорим ниже.

Способ 1: мастер функций

  1. Выделяем на листе ячейку, куда будет выводиться готовый результат. Кликаем на кнопку «Вставить функцию», расположенную слева от строки функций.

В открывшемся списке ищем запись СТАНДОТКЛОН.В или СТАНДОТКЛОН.Г. В списке имеется также функция СТАНДОТКЛОН, но она оставлена из предыдущих версий Excel в целях совместимости. После того, как запись выбрана, жмем на кнопку «OK».

  • Результат расчета будет выведен в ту ячейку, которая была выделена в самом начале процедуры поиска среднего квадратичного отклонения.
  • Способ 2: вкладка «Формулы»

    Также рассчитать значение среднеквадратичного отклонения можно через вкладку «Формулы».

      Выделяем ячейку для вывода результата и переходим во вкладку «Формулы».

  • После этого запускается окно аргументов. Все дальнейшие действия нужно производить так же, как и в первом варианте.
  • Способ 3: ручной ввод формулы

    Существует также способ, при котором вообще не нужно будет вызывать окно аргументов. Для этого следует ввести формулу вручную.

      Выделяем ячейку для вывода результата и прописываем в ней или в строке формул выражение по следующему шаблону:

    =СТАНДОТКЛОН.Г(число1(адрес_ячейки1); число2(адрес_ячейки2);…)
    или
    =СТАНДОТКЛОН.В(число1(адрес_ячейки1); число2(адрес_ячейки2);…).

    Всего можно записать при необходимости до 255 аргументов.

  • После того, как запись сделана, нажмите на кнопку Enter на клавиатуре.
  • Как видим, механизм расчета среднеквадратичного отклонения в Excel очень простой. Пользователю нужно только ввести числа из совокупности или ссылки на ячейки, которые их содержат. Все расчеты выполняет сама программа. Намного сложнее осознать, что же собой представляет рассчитываемый показатель и как результаты расчета можно применить на практике. Но постижение этого уже относится больше к сфере статистики, чем к обучению работе с программным обеспечением.

    Отблагодарите автора, поделитесь статьей в социальных сетях.

    Разбираем формулы среднеквадратического отклонения и дисперсии в Excel

    Цель данной статьи показать, как математические формулы, с которыми вы можете столкнуться в книгах и статьях, разложить на элементарные функции в Excel.

    В данной статье мы разберем формулы среднеквадратического отклонения и дисперсии и рассчитаем их в Excel.

    Перед тем как переходить к расчету среднеквадратического отклонения и разбирать формулу, желательно разобраться в элементарных статистических показателях и обозначениях.

    Рассматривая формулы моделей прогнозирования, мы встретимся со следующими показателями:

    Например, у нас есть временной ряд — продажи по неделям в шт.

    Для этого временного ряда i=1, n=10 , ,

    Рассмотрим формулу среднего значения:

    Для нашего временного ряда определим среднее значение

    Также для выявления тенденций помимо среднего значения представляет интерес и то, насколько наблюдения разбросаны относительно среднего. Среднеквадратическое отклонение показывает меру отклонения наблюдений относительно среднего.

    Читать еще:  Не работают формулы в excel

    Формула расчета среднеквадратического отклонение для выборки следующая:

    Разложим формулу на составные части и рассчитаем среднеквадратическое отклонение в Excel на примере нашего временного ряда.

    1. Рассчитаем среднее значение для этого воспользуемся формулой Excel =СРЗНАЧ(B11:K11)

    = СРЗНАЧ(ссылка на диапазон) = 100/10=10

    2. Определим отклонение каждого значения ряда относительно среднего

    для первой недели = 6-10=-4

    для второй недели = 10-10=0

    для третей = 7-1=-3 и т.д.

    3. Для каждого значения ряда определим квадрат разницы отклонения значений ряда относительно среднего

    для первой недели = (-4)^2=16

    для второй недели = 0^2=0

    для третей = (-3)^2=9 и т.д.

    4. Рассчитаем сумму квадратов отклонений значений относительно среднего с помощью формулы =СУММ(ссылка на диапазон (ссылка на диапазон с )

    =16+0+9+4+16+16+4+9+0+16=90

    5. , для этого сумму квадратов отклонений значений относительно среднего разделим на количество значений минус единица (Сумма((Xi-Xср)^2))/(n-1)

    = 90/(10-1)=10

    6. Среднеквадратическое отклонение равно = корень(10)=3,2

    Итак, в 6 шагов мы разложили сложную математическую формулу, надеюсь вам удалось разобраться со всеми частями формулы и вы сможете самостоятельно разобраться в других формулах.

    Рассмотрим еще один показатель, который в будущем нам понадобятся — дисперсия.

    Как рассчитать дисперсию в Excel?

    Дисперсия — квадрат среднеквадратического отклонения и отражает разброс данных относительно среднего.

    Рассчитаем дисперсию:

    Итак, теперь мы умеем рассчитывать среднеквадратическое отклонение и дисперсию в Excel. Надеемся, полученные знания пригодятся вам в работе.

    Точных вам прогнозов!

    Присоединяйтесь к нам!

    Скачивайте бесплатные приложения для прогнозирования и бизнес-анализа:

    • Novo Forecast Lite — автоматический расчет прогноза в Excel .
    • 4analytics — ABC-XYZ-анализ и анализ выбросов в Excel.
    • Qlik Sense Desktop и QlikView Personal Edition — BI-системы для анализа и визуализации данных.

    Тестируйте возможности платных решений:

    • Novo Forecast PRO — прогнозирование в Excel для больших массивов данных.

    Получите 10 рекомендаций по повышению точности прогнозов до 90% и выше.

    Как посчитать среднеквадратичное отклонение в экселе?

    В программе эксель можно посчитать среднеквадратичное отклонение двумя способами: использовать стандартные формулы или воспользоваться специальной функцией. Рассмотрим оба метода расчета и сравним их результаты.

    Перед нами таблица, состоящая из двух строк и шести столбцов, на основании этих данных и будем делать расчет.

    Первый способ.

    Первый шаг. Рассчитаем среднее значение пяти данных показателей, для этого воспользуемся функцией СРЗНАЧ, в ячейке «В3» напишем формулу: =СРЗНАЧ(B2:F2).

    Второй шаг. Рассчитаем отклонения каждого показателя от среднего, для этого в ячейке «В4» пишем формулу: =B2-$B$3, знаки доллара ставим, чтобы при копировании данной формулы на другие ячейки, параметр среднего значения всегда вычитался. Копируем соответственно данную формулу на другие ячейки.

    Третий шаг. Возведем каждое отклонения от среднего в квадратный корень, для этого в ячейке «В5» пишем формулу: =B4^2, которую копируем на оставшийся диапазон ячеек (с «С5» по «F5»).

    Четвертый шаг. Посчитаем сумму квадратных отклонений, для этого в ячейке «В6» напишем формулу =СУММ(B5:F5).

    Пятый шаг. У нас все готово, чтобы рассчитать среднеквадратичное отклонения. Для этого нужно сумму отклонений от среднего значения в квадрате (8,8) разделить на количество опытов минус один (5-1) и от получившегося значения изъять квадратный корень. Пишем в ячейке «В8» формулу: =КОРЕНЬ((B6/(5-1))).

    В итоге получили цифру равную 1,483

    Второй способ.

    Программа эксель позволяет избегать такого количества расчетов, а, следовательно, сэкономить время, вам просто нужно воспользоваться для расчета среднеквадратичное отклонения функцией СТАНДОТКЛОН, вы внутри неё указываете диапазон, для которого нужно сделать расчет. В ячейке «В8» пишем формулу =СТАНДОТКЛОН(B2:F2).

    В итоге результаты обоих вариантов расчета среднеквадратичного отклонения совпали, а вы выбирайте метод, который наиболее подходит к вам.

    Читать еще:  Как открыть защищенный файл excel

    Среднее стандартное отклонение в excel

    Цель данной статьи показать, как математические формулы, с которыми вы можете столкнуться в книгах и статьях, разложить на элементарные функции в Excel.

    В данной статье мы разберем формулы среднеквадратического отклонения и дисперсии и рассчитаем их в Excel.

    Перед тем как переходить к расчету среднеквадратического отклонения и разбирать формулу, желательно разобраться в элементарных статистических показателях и обозначениях.

    Рассматривая формулы моделей прогнозирования, мы встретимся со следующими показателями:

    Например, у нас есть временной ряд — продажи по неделям в шт.

    Для этого временного ряда i=1, n=10 , ,

    Рассмотрим формулу среднего значения:

    Для нашего временного ряда определим среднее значение

    Также для выявления тенденций помимо среднего значения представляет интерес и то, насколько наблюдения разбросаны относительно среднего. Среднеквадратическое отклонение показывает меру отклонения наблюдений относительно среднего.

    Формула расчета среднеквадратического отклонение для выборки следующая:

    Разложим формулу на составные части и рассчитаем среднеквадратическое отклонение в Excel на примере нашего временного ряда.

    1. Рассчитаем среднее значение для этого воспользуемся формулой Excel =СРЗНАЧ(B11:K11)

    = СРЗНАЧ(ссылка на диапазон) = 100/10=10

    2. Определим отклонение каждого значения ряда относительно среднего

    для первой недели = 6-10=-4

    для второй недели = 10-10=0

    для третей = 7-1=-3 и т.д.

    3. Для каждого значения ряда определим квадрат разницы отклонения значений ряда относительно среднего

    для первой недели = (-4)^2=16

    для второй недели = 0^2=0

    для третей = (-3)^2=9 и т.д.

    4. Рассчитаем сумму квадратов отклонений значений относительно среднего с помощью формулы =СУММ(ссылка на диапазон (ссылка на диапазон с )

    =16+0+9+4+16+16+4+9+0+16=90

    5. , для этого сумму квадратов отклонений значений относительно среднего разделим на количество значений минус единица (Сумма((Xi-Xср)^2))/(n-1)

    = 90/(10-1)=10

    6. Среднеквадратическое отклонение равно = корень(10)=3,2

    Итак, в 6 шагов мы разложили сложную математическую формулу, надеюсь вам удалось разобраться со всеми частями формулы и вы сможете самостоятельно разобраться в других формулах.

    Рассмотрим еще один показатель, который в будущем нам понадобятся — дисперсия.

    Как рассчитать дисперсию в Excel?

    Дисперсия — квадрат среднеквадратического отклонения и отражает разброс данных относительно среднего.

    Рассчитаем дисперсию:

    Итак, теперь мы умеем рассчитывать среднеквадратическое отклонение и дисперсию в Excel. Надеемся, полученные знания пригодятся вам в работе.

    Точных вам прогнозов!

    Присоединяйтесь к нам!

    Скачивайте бесплатные приложения для прогнозирования и бизнес-анализа:

    • Novo Forecast Lite — автоматический расчет прогноза в Excel .
    • 4analytics — ABC-XYZ-анализ и анализ выбросов в Excel.
    • Qlik Sense Desktop и QlikView Personal Edition — BI-системы для анализа и визуализации данных.

    Тестируйте возможности платных решений:

    • Novo Forecast PRO — прогнозирование в Excel для больших массивов данных.

    Получите 10 рекомендаций по повышению точности прогнозов до 90% и выше.

    Среднеквадратическое (стандартное) отклонение

    Определение

    Среднеквадратическое отклонение (англ. Standard Deviation, SD) является показателем, который используется в теории вероятности и математической статистике для оценки степени рассеивания случайной величины относительно ее математического ожидания. В инвестировании стандартное отклонение доходности ценных бумаг или портфеля используется для оценки меры риска. Чем выше степень рассеивания доходности ценной бумаги относительно ожидаемого доходности (математическое ожидание доходности), тем выше риск инвестирования, и наоборот.

    Среднеквадратическое отклонение как правило обозначается греческой буквой σ (сигма), а стандартное отклонение латинской буквой S или как Std(X), где X – случайная величина.

    Формула

    Истинное значение среднеквадратического отклонения

    Если известно точное распределение дискретной случайной величины, а именно, известно ее значение при каждом исходе и может быть оценена вероятность каждого исхода, то формула расчета среднеквадратического отклонения будет выглядеть следующим образом.

    Где Xi – значение случайной величины X при i-ом исходе; M(X) математическое ожидание случайной величины X; pi – вероятность i-го исхода; N – количество возможных исходов.

    Читать еще:  Как рассчитать среднее арифметическое в excel

    При этом математическое ожидание случайной величины рассчитывается по формуле:

    Стандартное отклонение генеральной совокупности

    На практике вместо точного распределение случайной величины обычно доступна только выборка данных. В этом случае рассчитывается оценочное значение среднеквадратического отклонения, которое в этом случае называют стандартным отклонением (S). Если оценка основывается на всей генеральной совокупности данных, необходимо использовать следующую формулу.

    Где Xi – i-ое значение случайной величины X; X – среднеарифметическое генеральной совокупности; N – объем генеральной совокупности.

    Стандартное отклонение выборки

    Если используется не вся генеральная совокупность данных, а выборка из нее, то формула расчета стандартного отклонения основывается на несмещенной оценке дисперсии.

    Где Xi – i-ое значение случайной величины X; X – среднеарифметическое выборки; N – объем выборки.

    Примеры расчета

    Пример 1

    Портфельный менеджер должен оценить риски инвестирования в акции двух компаний А и Б. При этом он рассматривает 5 сценариев развития событий, информация по которым представлена в таблице.

    Поскольку нам известно точное распределение доходности каждой из акций, мы можем рассчитать истинное значение среднеквадратического отклонения доходности для каждой из них.

    Шаг 1. Рассчитаем математическое ожидание доходности для каждой из акций.

    M(А) = -5%×0,02+6%×0,25+15%×0,40+24%×0,30+34%×0,03 = 15,62%

    M(Б) = -18%×0,02+2%×0,25+16%×0,40+27%×0,30+36%×0,03 = 22,14%

    Шаг 2. Подставим полученные данные в первую формулу.

    Как мы можем видеть, акции Компании А характеризуются меньшим уровнем риска, поскольку у них ниже среднеквадратическое отклонение доходности. Следует также отметить, что и ожидаемая доходность у них ниже, чем у акций Компании Б.

    Пример 2

    Аналитик располагает данными о доходности двух ценных бумаг за последние 5 лет, которые представлены в таблице.

    Поскольку точное распределение доходности неизвестно, а в распоряжении аналитика есть только выборка из генеральной совокупности данных, мы можем рассчитать стандартное отклонение выборки на основании несмещенной дисперсии.

    Шаг 1. Рассчитаем ожидаемую доходность для каждой ценной бумаги как среднеарифметическое выборки.

    X А = (7 + 15 + 2 – 5 + 6) ÷ 5 = 5%

    X Б = (3 – 2 + 12 + 4 +8) ÷ 5 = 5%

    Шаг 2. Рассчитаем стандартное отклонение доходности для каждой из ценных бумаг по формуле для выборки из генеральной совокупности данных.

    Следует отметить, что обе ценные бумаги имеют равную ожидаемую доходность 5%. При этом стандартное отклонение доходности у ценной бумаги Б ниже, что при прочих равных делает ее более привлекательным объектом инвестирования в следствие лучшего профиля риск-доходность.

    Стандартное отклонение в Excel

    В Excel предусмотрено две функции для расчета стандартного отклонения выборки и генеральной совокупности.

    Для выборки воспользуйтесь функцией «СТАНДОТКЛОН.В»:

    1. В диапазоне ячеек B1:F1 введены значения случайной величины X.
    2. Выберите выходную ячейку B2.
    3. В командной строке нажмите кнопку fx, во всплывшем окне «Вставка функции» выберите Категорию «Полный алфавитный перечень» и выберите функцию «СТАНДОТКЛОН.В».
    4. В поле «Число1» выберите диапазон ячеек B1:F1, поле «Число2» оставьте пустым и нажмите кнопку «OK».

    Для генеральной совокупности используется функция «СТАНДОТКЛОН.Г»:

    1. В диапазоне ячеек B1:F1 введены значения случайной величины X.
    2. Выберите выходную ячейку B2.
    3. В командной строке нажмите кнопку fx, во всплывшем окне «Вставка функции» выберите Категорию «Полный алфавитный перечень» и выберите функцию «СТАНДОТКЛОН.Г».
    4. В поле «Число1» выберите диапазон ячеек B1:F1, поле «Число2» оставьте пустым и нажмите кнопку «OK».

    Интерпретация

    В инвестировании стандартное отклонение доходности используется в качестве меры волатильности. Чем выше его значение, тем выше риск, связанный с инвестированием в этот актив, и наоборот. При прочих равных параметрах, предпочтение следует отдавать тому активу, у которого этот показатель будет минимальным.

    Ссылка на основную публикацию
    Adblock
    detector